R1560xシリーズ

車載用途向け 入力最大 60 V 100 mA 超低消費ボルテージレギュレータ

概要
R1560xは入力最大60 V、100 mA出力可能な車載用超低消費ボルテージレギュレータです。短絡電流制限回路、過電流保護回路とサーマルシャットダウン回路を内蔵しており、カーエクステリアーやコントロールユニットなどの車載向け定電圧源に最適です。

特長
- 低消費電流 (Typ. 3.0 μA) により、エンジン停止時のバッテリーセ предназначен温を軽減
- 入力電圧は5.5 V〜60 Vと幅広く、出力電圧精度は±0.8%と高精度
- 高放熱性と省実装面積を実現するHSOP-6JとTO-252-5-P2パッケージ

主要仕様
- 入力電圧範囲 (最大定格) : 5.5 V〜60 V (80 V)
- 動作温度範囲 : −40°C〜125°C
- 消費電流 : Typ. 3.0 μA
- 入出力電圧差 : Typ. 1.5 V
 \((I_{\text{OUT}} = 100 \text{ mA}, V_{\text{OUT}} = 5.0 \text{ V}) \)
- 出力電圧精度 : ±0.8% (Ta = 25°C)
- 出力電圧温度係数: Typ. ±100 ppm/°C
- 入力安定度 : Typ. 0.01%/V (6 V ≤ Vin ≤ 60 V)
- 短絡電流制限 : Typ. 50 mAで制限
- 過電流保護 : Typ. 150 mAで制限
- サーマルシャットダウン機能: Typ.165°Cで検出

基本回路例

アプリケーション
- EVインバータや充電制御などのコントロールユニットの定電圧源
- 48 Vバッテリーシステム (マイルドハイブリッド)、BMSの定電圧源
■ セレクションガイド

R1560xは、設定出力電圧、パッケージ、品質区分を用途によって選択指定することができます。

<table>
<thead>
<tr>
<th>製品名</th>
<th>パッケージ</th>
<th>1 リール個数</th>
<th>鉛フリー</th>
<th>ハログンフリー</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1560Sxx1B-E2-#E</td>
<td>HSOP-6J</td>
<td>1,000個</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>R1560Jxx1B-T1-#E</td>
<td>TO-252-5-P2</td>
<td>3,000個</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

xx: 設定出力電圧 (V\(_{\text{SET}}\)) の指定
1.8 V (18) / 2.5 V (25) / 2.8 V (28) / 3.0 V (30) / 3.3 V (33) / 3.4 V (34) / 5.0 V (50) / 7.0 V (70) / 8.0 V (80) / 9.0 V (90) / 10.0 V (A0) / 12.0 V (C0) / 14.0 V (E0) で指定

#: 品質区分の指定

<table>
<thead>
<tr>
<th>#</th>
<th>動作温度範囲</th>
<th>検査温度</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-40°C to 125°C</td>
<td>25°C, 高温</td>
</tr>
<tr>
<td>K</td>
<td>-40°C to 125°C</td>
<td>低温, 25°C, 高温</td>
</tr>
</tbody>
</table>

■ ブロック図

![ブロック図](image-url)
■ 端子説明

HSOP-6J 端子接続図

HSOP-6J 端子説明

<table>
<thead>
<tr>
<th>端子番号</th>
<th>端子名</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VOUT</td>
<td>出力端子</td>
</tr>
<tr>
<td>2</td>
<td>GND(1)</td>
<td>グラウンド端子</td>
</tr>
<tr>
<td>3</td>
<td>CE</td>
<td>チップイネーブル端子, Active-high</td>
</tr>
<tr>
<td>4</td>
<td>GND(1)</td>
<td>グラウンド端子</td>
</tr>
<tr>
<td>5</td>
<td>GND(1)</td>
<td>グラウンド端子</td>
</tr>
<tr>
<td>6</td>
<td>VDD</td>
<td>入力端子</td>
</tr>
</tbody>
</table>

TO-252-5-P2 端子説明

<table>
<thead>
<tr>
<th>端子番号</th>
<th>端子名</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDD</td>
<td>入力端子</td>
</tr>
<tr>
<td>2</td>
<td>NC</td>
<td>ノーコネクション</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>グラウンド端子</td>
</tr>
<tr>
<td>4</td>
<td>VOUT</td>
<td>出力端子</td>
</tr>
<tr>
<td>5</td>
<td>CE</td>
<td>チップイネーブル端子, Active-high</td>
</tr>
</tbody>
</table>

基板実装時は GND ピン同士を必ず配線してください。

VOUT 端子内部等価回路図

CE 端子内部等価回路図

(1) 基板実装時は GND ピン同士を必ず配線してください。
■ 絶対最大定格

絶対最大定格

<table>
<thead>
<tr>
<th>記号</th>
<th>パラメータ</th>
<th>定格</th>
<th>單位</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>入力電圧</td>
<td>-0.3 ~ 80</td>
<td>V</td>
</tr>
<tr>
<td>V_{IN}</td>
<td>尖頭電圧(1)</td>
<td>90</td>
<td>V</td>
</tr>
<tr>
<td>V_{CE}</td>
<td>CE 端子入力電圧</td>
<td>-0.3 ~ 80</td>
<td>V</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>出力電圧</td>
<td>-0.3 ~ V_{IN} + 0.3 ≤ 80</td>
<td>V</td>
</tr>
<tr>
<td>I_{OUT}</td>
<td>出力電流</td>
<td>150</td>
<td>mA</td>
</tr>
<tr>
<td>P_{D}</td>
<td>許容損失(2)</td>
<td>HSOP-6J JEDEC STD.51-7</td>
<td>3400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TO-252-5-P2 JEDEC STD.51-7</td>
<td>4800</td>
</tr>
<tr>
<td>T_{j}</td>
<td>ジャンクション温度</td>
<td>-40 ~ 150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>保存周囲温度</td>
<td>-55 ~ 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

絶対最大定格に記載された値を超えた条件下に置くことはデバイスに永久的な破壊をもたらすことがあるばかりか、デバイス及びそれを使用している機器の信頼性及び安全性に悪影響をもたらします。絶対最大定格値でデバイスが機能動作をすることは保証していません。

■ 推奨動作条件

推奨動作条件

<table>
<thead>
<tr>
<th>記号</th>
<th>パラメータ</th>
<th>動作範囲</th>
<th>單位</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>入力電圧</td>
<td>5.5 ~ 60</td>
<td>V</td>
</tr>
<tr>
<td>T_{a}</td>
<td>動作周囲温度</td>
<td>-40 ~ 125</td>
<td>°C</td>
</tr>
</tbody>
</table>

推奨動作条件

半導体が使用される応用電子機器は半導体がその推奨動作条件の範囲で動作するように設計する必要があります。ノイズ、サージといえどもその範囲を超えると半導体の正常な動作は期待できなくなります。推奨動作条件を超えた場合には、デバイス特性や信頼性に影響を与えますので、超えないように注意してください。

(1) 印加時間：200 ms 以内
(2) 「許容損失」に詳しく記述していますので、参照してください。
■ 電気的特性

特に記述のない限り、C_{IN} = 0.1 \mu F / C_{OUT} = 0.1 \mu F で示した値は −40°C ≤ Ta ≤ 125°C の設計保証値です。

R1560x (-AE) 電気的特性表 (Ta = 25°C)

<table>
<thead>
<tr>
<th>記号</th>
<th>パラメータ</th>
<th>テスト条件/コメント</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>單位</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iss</td>
<td>消費電流</td>
<td>$V_{IN} = 14 \text{ V}$</td>
<td>$V_{CE} = 14 \text{ V}$</td>
<td>$I_{OUT} = 0 \text{ mA}$</td>
<td>$V_{SET} \leq 5.0 \text{ V}$</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = 18 \text{ V}$</td>
<td>$V_{CE} = 18 \text{ V}$</td>
<td>$I_{OUT} = 0 \text{ mA}$</td>
<td>$V_{SET} > 5.0 \text{ V}$</td>
<td>3.5</td>
</tr>
<tr>
<td>I_{standby}</td>
<td>スタンバイ電流</td>
<td>$V_{IN} = 60 \text{ V}$</td>
<td>$V_{CE} = 0 \text{ V}$</td>
<td>$V_{SET} \leq 5.0 \text{ V}$</td>
<td>0.1</td>
<td>2.0</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>出力電圧</td>
<td>$V_{SET} \leq 5.0 \text{ V}$</td>
<td>$V_{IN} = 14 \text{ V}$</td>
<td>$I_{OUT} = 1 \text{ mA}$</td>
<td>$V_{CE} = 14 \text{ V}$</td>
<td>$V_{SET} > 5.0 \text{ V}$</td>
</tr>
<tr>
<td>ΔV_{OUT}/ΔI_{OUT}</td>
<td>負荷安定度</td>
<td>$V_{IN} = 8 \text{ V}$ ($V_{SET} \leq 5.0 \text{ V}$)</td>
<td>$V_{IN} = V_{SET} + 3 \text{ V}$ ($V_{SET} > 5.0 \text{ V}$)</td>
<td>1 mA $≤ I_{OUT} \leq 100$ mA</td>
<td>$V_{SET} \leq 5.0 \text{ V}$</td>
<td>$V_{SET} > 5.0 \text{ V}$</td>
</tr>
<tr>
<td>ΔV_{OUT}/ΔV_{IN}</td>
<td>入力安定度</td>
<td>$6 \text{ V} \leq V_{IN} \leq 60 \text{ V}$</td>
<td>$V_{SET} \leq 5.0 \text{ V}$</td>
<td>$V_{SET} > 5.0 \text{ V}$</td>
<td>$I_{OUT} = 1 \text{ mA}$</td>
<td>$I_{OUT} = 1 \text{ mA}$</td>
</tr>
<tr>
<td>V_{DIF}</td>
<td>入出力電圧差</td>
<td>$I_{OUT} = 100$ mA</td>
<td>$V_{IN} = 8.0 \text{ V}$ ($V_{SET} \leq 5.0 \text{ V}$)</td>
<td>$V_{IN} = V_{SET} + 3 \text{ V}$ ($V_{SET} > 5.0 \text{ V}$)</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>I_{LIM}</td>
<td>出力電流制限</td>
<td>$V_{IN} = 8.0 \text{ V}$ ($V_{SET} \leq 5.0 \text{ V}$)</td>
<td>$V_{IN} = V_{SET} + 3 \text{ V}$ ($V_{SET} > 5.0 \text{ V}$)</td>
<td>100</td>
<td>150</td>
<td>250</td>
</tr>
<tr>
<td>I_{SC}</td>
<td>短絡電流</td>
<td>$V_{IN} = 8.0 \text{ V}$ ($V_{SET} \leq 5.0 \text{ V}$)</td>
<td>$V_{IN} = V_{SET} + 3 \text{ V}$ ($V_{SET} > 5.0 \text{ V}$)</td>
<td>$V_{OUT} = 0 \text{ V}$</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>V_{CEH}</td>
<td>CE 入力電圧 “H”</td>
<td>$V_{IN} = 60 \text{ V}$</td>
<td>$V_{SET} \leq 5.0 \text{ V}$</td>
<td>$V_{SET} > 5.0 \text{ V}$</td>
<td>$V_{OUT} = 0 \text{ V}$</td>
<td>3.0</td>
</tr>
<tr>
<td>V_{CEL}</td>
<td>CE 入力電圧 “L”</td>
<td>$V_{IN} = 60 \text{ V}$</td>
<td>$V_{SET} \leq 5.0 \text{ V}$</td>
<td>$V_{SET} > 5.0 \text{ V}$</td>
<td>$V_{OUT} = 0 \text{ V}$</td>
<td>0.3</td>
</tr>
<tr>
<td>I_{PD}</td>
<td>CE ブルダウン電流</td>
<td>$V_{IN} = 60 \text{ V}$</td>
<td>$V_{CE} = 3 \text{ V}$</td>
<td>0.4</td>
<td>0.8</td>
<td>\mu A</td>
</tr>
<tr>
<td>T_{TSD}</td>
<td>サーマルシャットダウン検出温度</td>
<td>$V_{IN} = 60 \text{ V}$</td>
<td>$V_{CE} = 3 \text{ V}$</td>
<td>150</td>
<td>165</td>
<td>°C</td>
</tr>
<tr>
<td>T_{TSR}</td>
<td>サーマルシャットダウン解除温度(1)</td>
<td>$V_{IN} = 60 \text{ V}$</td>
<td>$V_{CE} = 3 \text{ V}$</td>
<td>125</td>
<td>135</td>
<td>°C</td>
</tr>
</tbody>
</table>

全ての製品において、パルス負荷条件 (Tj ≈ Ta = 25°C) の下で、全パラメータをテストしています。

(1) Ta > 125°C で VDD 端子と CE 端子を同時投入した場合、サーマルシャットダウン検出状態になる場合があります。
R1560x (-AE) 製品別電気的特性表

<table>
<thead>
<tr>
<th>製品名</th>
<th>V_{OUT} (Ta = 25°C)</th>
<th>V_{OUT} (-40°C ≤ Ta ≤ 125°C)</th>
<th>$\Delta V_{\text{OUT}}/\Delta I_{\text{OUT}}$ (mV)</th>
<th>V_{DIFF} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1560x181B</td>
<td>1.7856</td>
<td>1.80</td>
<td>1.8144</td>
<td>1.7730</td>
</tr>
<tr>
<td>R1560x251B</td>
<td>2.4800</td>
<td>2.50</td>
<td>2.5200</td>
<td>2.4625</td>
</tr>
<tr>
<td>R1560x281B</td>
<td>2.7776</td>
<td>2.80</td>
<td>2.8224</td>
<td>2.7500</td>
</tr>
<tr>
<td>R1560x301B</td>
<td>2.9760</td>
<td>3.00</td>
<td>3.0240</td>
<td>2.9500</td>
</tr>
<tr>
<td>R1560x331B</td>
<td>3.2736</td>
<td>3.30</td>
<td>3.3264</td>
<td>3.2500</td>
</tr>
<tr>
<td>R1560x341B</td>
<td>3.3728</td>
<td>3.40</td>
<td>3.4272</td>
<td>3.3490</td>
</tr>
<tr>
<td>R1560x501B</td>
<td>4.9600</td>
<td>5.00</td>
<td>5.0400</td>
<td>4.9250</td>
</tr>
<tr>
<td>R1560x701B</td>
<td>6.9160</td>
<td>7.00</td>
<td>7.0840</td>
<td>6.8600</td>
</tr>
<tr>
<td>R1560x801B</td>
<td>7.9040</td>
<td>8.00</td>
<td>8.0960</td>
<td>7.8400</td>
</tr>
<tr>
<td>R1560x901B</td>
<td>8.8920</td>
<td>9.00</td>
<td>9.1080</td>
<td>8.8200</td>
</tr>
<tr>
<td>R1560xA01B</td>
<td>9.8800</td>
<td>10.00</td>
<td>10.192</td>
<td>9.8200</td>
</tr>
<tr>
<td>R1560xC01B</td>
<td>11.856</td>
<td>12.00</td>
<td>12.144</td>
<td>11.760</td>
</tr>
<tr>
<td>R1560xE01B</td>
<td>13.832</td>
<td>14.00</td>
<td>14.168</td>
<td>13.720</td>
</tr>
</tbody>
</table>
特に記述のない限り、$C_{IN} = 0.1 \mu F$ / $C_{OUT} = 0.1 \mu F$

<table>
<thead>
<tr>
<th>R1560x (-KE) 電気的特性表</th>
<th>(~$-40^\circ C \leq Ta \leq 125^\circ C$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>記号</td>
<td>パラメータ</td>
</tr>
<tr>
<td>I_{SS}</td>
<td>消費電流</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Istandby</td>
<td>スタンバイ電流</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>出力電圧</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔV_{OUT}</td>
<td>負荷安定度</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔI_{OUT}</td>
<td>入力安定度</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{DIFF}</td>
<td>入出力電圧差</td>
</tr>
<tr>
<td>I_{LIM}</td>
<td>出力電流制限</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SC}</td>
<td>短絡電流</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{CEL}</td>
<td>CE 入力電圧 “H”</td>
</tr>
<tr>
<td></td>
<td>CE 入力電圧 “L”</td>
</tr>
<tr>
<td>I_{PD}</td>
<td>CE ブルダウン電流</td>
</tr>
<tr>
<td>T_{TSD}</td>
<td>サーマルシャットダウン検出温度</td>
</tr>
<tr>
<td>T_{TSR}</td>
<td>サーマルシャットダウン解消温度</td>
</tr>
</tbody>
</table>

全ての製品において、パルス負荷条件 ($T_j \approx Ta = 25^\circ C$) の下で、全パラメータをテストしています。

(1) $Ta > 125^\circ C$ で VDD 端子と CE 端子を同時投入した場合、サーマルシャットダウン検出状態になる場合があります。
R1560x (-KE) 製品別電気的特性表

(-40°C ≤ Ta ≤ 125°C)

<table>
<thead>
<tr>
<th>製品名</th>
<th>V_{OUT} (Ta = 25°C)</th>
<th>V_{OUT} (-40°C ≤ Ta ≤ 125°C)</th>
<th>$\Delta V_{\text{OUT}}/\Delta I_{\text{OUT}}$ (mV)</th>
<th>V_{DIF} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1560x181B</td>
<td>1.7856</td>
<td>1.80</td>
<td>1.8144</td>
<td>1.7730</td>
</tr>
<tr>
<td>R1560x251B</td>
<td>2.4800</td>
<td>2.50</td>
<td>2.5200</td>
<td>2.4625</td>
</tr>
<tr>
<td>R1560x281B</td>
<td>2.7776</td>
<td>2.80</td>
<td>2.8224</td>
<td>2.7580</td>
</tr>
<tr>
<td>R1560x301B</td>
<td>2.9760</td>
<td>3.00</td>
<td>3.0240</td>
<td>2.9550</td>
</tr>
<tr>
<td>R1560x331B</td>
<td>3.2736</td>
<td>3.30</td>
<td>3.3264</td>
<td>3.2505</td>
</tr>
<tr>
<td>R1560x341B</td>
<td>3.3728</td>
<td>3.40</td>
<td>3.4272</td>
<td>3.3490</td>
</tr>
<tr>
<td>R1560x501B</td>
<td>4.9600</td>
<td>5.00</td>
<td>5.0400</td>
<td>4.9250</td>
</tr>
<tr>
<td>R1560x701B</td>
<td>6.9160</td>
<td>7.00</td>
<td>7.0840</td>
<td>6.8600</td>
</tr>
<tr>
<td>R1560x801B</td>
<td>7.9040</td>
<td>8.00</td>
<td>8.0960</td>
<td>7.8400</td>
</tr>
<tr>
<td>R1560x901B</td>
<td>8.8920</td>
<td>9.00</td>
<td>9.1080</td>
<td>8.8200</td>
</tr>
<tr>
<td>R1560xA01B</td>
<td>9.8800</td>
<td>10.00</td>
<td>10.120</td>
<td>9.8000</td>
</tr>
<tr>
<td>R1560xC01B</td>
<td>11.8560</td>
<td>12.00</td>
<td>12.144</td>
<td>11.7600</td>
</tr>
<tr>
<td>R1560xE01B</td>
<td>13.8320</td>
<td>14.00</td>
<td>14.168</td>
<td>13.7200</td>
</tr>
</tbody>
</table>
■ 動作説明
サーマルシャットダウン機能
本製品は、サーマルシャットダウン機能を内蔵しており、ジャンクション温度が165°C（Typ.）以上になるとレギュレータは動作を停止します。ジャンクション温度が135°C（Typ.）以下になるとレギュレータは動作を再開します。温度上昇の原因が除去されないと、レギュレータはオン、オフを繰り返し、出力はパルス状になります。

■ アプリケーション情報

IC破壊防止用推奨接続例
VOUT端子を急峻にGNDに短絡すると、短絡ワイヤーのインダクタンスと出力キャパシタンス（COUT）との共振により負電圧が発生し、ご使用の基板パターンによっては、本製品、および、負荷デバイスが破壊されることがあります。VOUT端子とGND間にショットキーダイオード（D）を接続することはIC破壊防止に効果があります。
直列等価抵抗値対出力電流特性例

本ICの出力コンデンサはセラミックタイプを推奨しますが、他の低ESRタイプのコンデンサも使用可能です。参考までに下記測定回路で測定した、ノイズレベルが規定値以下になる条件を記載いたします。

測定条件
測定周波数：10 Hz ～ 2 MHz
周囲温度：−40°C ～ 125°C
コンデンサ：C1 = セラミック 0.1 μF, C2 = セラミック 0.1 μF
ESR : 0 ～ 100 Ohm
Vout : 1.8V, 5.0V
上記条件の評価において、出力ノイズレベルが規定値(40 μVrms)以下になることを確認。
■ 使用上の注意点
本製品を用いた電源回路の性能は、周辺回路に大きく依存します。PCBに実装された周辺部品または本製品が、定格電圧値、定格電流値、定格電力値を超えないようにしてください。周辺回路の設計の際には、以下の注意点に十分に注意してください。

位相補償
本製品は、出力負荷が変化しても安定して動作させるために、出力コンデンサの容量と等価直列抵抗（ESR）を位相補償に利用しています。このため0.1μF以上のコンデンサ（C_{OUT}）を必ず入れてください。なお、ESRによっては出力が発振する可能性がありますので温度特性、周波数特性を含めて充分評価してください。また、VDD端子とGND間には0.1μF以上のコンデンサ（C_N）をできるだけ配線が短くなるように付けてください。

基板レイアウト
HSOP-6Jパッケージの場合は、基板実装時にGNDの2番ピンと4番ピン、5番ピンを必ず配線してください。

最低動作電圧以下の挙動
推奨動作電圧以下の動作時には、出力電圧が不安定となりLDOの出力設定電圧を超えた電圧が出力される場合があります。
電源立ち上げ時にこの挙動を回避する場合、VIN端子とCE端子を同時に立ち上げる際は、両端子の電圧を100[V/ms]以上のスルーレートで立ち上げてください。100[V/ms]以下のスルーレートでVIN端子を立ち上げる場合は、電源電圧が5.5Vを超えた後、CE端子を立ち上げてください。
電源立ち下げ時にこの挙動を回避する場合、VIN端子とCE端子を同時に立ち下げる際は、両端子の電圧を-100[V/ms]よりも急峻なスルーレートで立ち下げてください。-100[V/ms]よりも緩やかなスルーレートでVIN端子を立ち下げる場合は、電源電圧が5.5Vを下回る前に、CE端子を立ち下げてください。

過渡応答特性
R1560xシリーズは出力コンデンサとしてC_{OUT}=0.1μFのセラミックコンデンサを用いれば、位相発振はせず動作します。しかし入力電圧や負荷電流に変動がある場合には、出力電圧の変動がシステムの要求を満たさない場合があります。特に、V_{SET}>5Vの高出力版では応答が遅くなり、出力変動が顕著になります。そのようなケースではC_{OUT}=10μF以上のセラミックコンデンサを使用することで、出力電圧の変動を小さくすることが可能です。出力ラインに電解コンデンサを使用する場合は、ICの直近にセラミックコンデンサを配置した上で電解コンデンサは、その外側に配置してください。
■ 特性例グラフ
以下の特性例は参考値であり、それぞれの値を保証するものではありません。

1) 出力電圧/出力電流 (Ta = 25°C)

- R1560x181B
 - VIN = 8V
 - VIN = 10V

- R1560x501B
 - VIN = 8V
 - VIN = 10V

- R1560xE01B
 - VIN = 16V
2) 出力電圧対入力電圧 (Ta = 25°C)
 R1560x181B

3) 消費電流対周囲温度
 R1560x181B
 R1560x501B
4) 出力電圧対周囲温度 (I_{out} = 1 mA)

R1560x181B

<table>
<thead>
<tr>
<th>Ta (°C)</th>
<th>VIN = 14V</th>
<th>VIN = 48V</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40</td>
<td>1.836</td>
<td>1.818</td>
</tr>
<tr>
<td>-20</td>
<td>1.820</td>
<td>1.802</td>
</tr>
<tr>
<td>0</td>
<td>1.813</td>
<td>1.795</td>
</tr>
<tr>
<td>20</td>
<td>1.806</td>
<td>1.788</td>
</tr>
<tr>
<td>40</td>
<td>1.799</td>
<td>1.781</td>
</tr>
<tr>
<td>60</td>
<td>1.792</td>
<td>1.774</td>
</tr>
<tr>
<td>80</td>
<td>1.785</td>
<td>1.768</td>
</tr>
<tr>
<td>100</td>
<td>1.778</td>
<td>1.760</td>
</tr>
<tr>
<td>120</td>
<td>1.771</td>
<td>1.753</td>
</tr>
</tbody>
</table>

R1560x501B

<table>
<thead>
<tr>
<th>Ta (°C)</th>
<th>VIN = 14V</th>
<th>VIN = 48V</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40</td>
<td>5.050</td>
<td>5.035</td>
</tr>
<tr>
<td>-20</td>
<td>5.039</td>
<td>5.025</td>
</tr>
<tr>
<td>0</td>
<td>5.028</td>
<td>5.014</td>
</tr>
<tr>
<td>20</td>
<td>5.017</td>
<td>5.003</td>
</tr>
<tr>
<td>40</td>
<td>5.006</td>
<td>4.992</td>
</tr>
<tr>
<td>60</td>
<td>4.995</td>
<td>4.981</td>
</tr>
<tr>
<td>80</td>
<td>4.984</td>
<td>4.969</td>
</tr>
<tr>
<td>100</td>
<td>4.973</td>
<td>4.959</td>
</tr>
<tr>
<td>120</td>
<td>4.962</td>
<td>4.947</td>
</tr>
</tbody>
</table>

R1560x01B

<table>
<thead>
<tr>
<th>Ta (°C)</th>
<th>VIN = 18V</th>
<th>VIN = 48V</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40</td>
<td>14.328</td>
<td>14.313</td>
</tr>
<tr>
<td>-20</td>
<td>14.317</td>
<td>14.302</td>
</tr>
<tr>
<td>0</td>
<td>14.306</td>
<td>14.291</td>
</tr>
<tr>
<td>20</td>
<td>14.295</td>
<td>14.280</td>
</tr>
<tr>
<td>40</td>
<td>14.284</td>
<td>14.269</td>
</tr>
<tr>
<td>60</td>
<td>14.273</td>
<td>14.258</td>
</tr>
<tr>
<td>80</td>
<td>14.262</td>
<td>14.247</td>
</tr>
<tr>
<td>100</td>
<td>14.251</td>
<td>14.236</td>
</tr>
<tr>
<td>120</td>
<td>14.240</td>
<td>14.225</td>
</tr>
</tbody>
</table>
5) 消費電流対入力電圧

R1560x181B

R1560x501B

6) 入出力電圧差対出力電流

R1560x181B

R1560x501B
7) リップル除去率対入力バイアス電圧 (Ta = 25°C, V_{RIPPLE} = ±0.2 V)

- **R1560x181B**
 - C_{OUT} = 0.1 µF

- **R1560x501B**
 - C_{OUT} = 0.1 µF

- **R1560x01B**
 - C_{OUT} = 10 µF
8) Ripple removal rate vs frequency (Ta = 25°C)

R1560x181B

- **V\text{IN} = 14 V ± 0.2 V ripple, C\text{OUT} = 0.1 \mu F**

R1560x501B

- **V\text{IN} = 14 V ± 0.2 V ripple, C\text{OUT} = 0.1 \mu F**

8) Input transient response (Ta = 25°C, I\text{OUT} = 1 mA)

R1560x181B

R1560x501B

- **V\text{IN} = 18 V ± 0.2 V ripple, C\text{OUT} = 10 \mu F**
10) ロードダンプ（Ta = 25°C, Iout = 1 mA）

R1560x181B

R1560x501B

R1560x01B

R1560x01B
11) 負荷過渡応答 (Ta = 25°C, I_{out} = 1 mA ↔ 20 mA)

R1560x181B

\[V_{IN} = 14 \text{ V, } I_{OUT} = 1 \text{ mA} \rightarrow 20 \text{ mA} \]

R1560x501B

\[V_{IN} = 14 \text{ V, } I_{OUT} = 1 \text{ mA} \rightarrow 20 \text{ mA} \]

R1560xE01B

\[V_{IN} = 18 \text{ V, } I_{OUT} = 1 \text{ mA} \rightarrow 20 \text{ mA} \]
12) CE立ち上がり (Ta = 25°C)

R1560x181B
VIN = 14 V, COUT = 0.1 µF

R1560x181B
VIN = 14 V, COUT = 10 µF

R1560x501B
VIN = 14 V, COUT = 0.1 µF

R1560x501B
VIN = 14 V, COUT = 10 µF

R1560xE01B
VIN = 18 V, COUT = 10 µF
HSOP-6Jパッケージの許容損失について特性例を示します。なお、許容損失は実装条件に左右されます。本特性例は、JEDEC STD. 51-7に基づいた下記測定条件での参考データとなります。

<table>
<thead>
<tr>
<th>項目</th>
<th>測定状態</th>
<th>基板実装状態（風速 0 m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>基板材質</td>
<td></td>
<td>ガラスエボキシ樹脂（4層基板）</td>
</tr>
<tr>
<td>基板サイズ</td>
<td></td>
<td>76.2 mm × 114.3 mm × 0.8 mm</td>
</tr>
<tr>
<td>配線率</td>
<td></td>
<td>外層（1層）：95%以下, 50 mm 角</td>
</tr>
<tr>
<td></td>
<td></td>
<td>内層（2層, 3層）：100%, 50 mm 角</td>
</tr>
<tr>
<td></td>
<td></td>
<td>外層（4層）：100%, 50 mm 角</td>
</tr>
<tr>
<td>スルーホール</td>
<td></td>
<td>φ 0.3 mm × 28 個</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>項目</th>
<th>測定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>許容損失</td>
<td>3400 mW</td>
</tr>
<tr>
<td>熱抵抗（θja）</td>
<td>θja = 37°C/W</td>
</tr>
<tr>
<td>熱特性（ψjt）</td>
<td>ψjt = 7°C/W</td>
</tr>
</tbody>
</table>

θja：ジャンクション温度と周囲温度間の熱抵抗
ψjt：ジャンクション温度とパッケージマーク面中央温度間の熱特性

許容損失対周囲温度
測定用基板レイアウト
TO-252-5 パッケージの許容損失について特性例を示します。なお、許容損失は実装条件に左右されます。本特性例は、JEDEC STD. 51-7 に基づいた下記測定条件での参考データとなります。

測定条件

<table>
<thead>
<tr>
<th>項目</th>
<th>測定条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>測定状態</td>
<td>基板実装状態 (風速 0 m/s)</td>
</tr>
<tr>
<td>基板材質</td>
<td>ガラスエポキシ樹脂 (4層基板)</td>
</tr>
<tr>
<td>基板サイズ</td>
<td>76.2 mm × 114.3 mm × 0.8 mm</td>
</tr>
<tr>
<td>配線率</td>
<td>外層 (1層)：95%以下, 50 mm 角</td>
</tr>
<tr>
<td></td>
<td>内層 (2層, 3層)：100%, 50 mm 角</td>
</tr>
<tr>
<td></td>
<td>外層 (4層)：100%, 50 mm 角</td>
</tr>
<tr>
<td>スルーホール</td>
<td>ϕ 0.3 mm × 21 個</td>
</tr>
</tbody>
</table>

測定結果

(\(Ta = 25°C, T_{jmax} = 150°C\))

<table>
<thead>
<tr>
<th>項目</th>
<th>測定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>許容損失</td>
<td>4800 mW</td>
</tr>
<tr>
<td>熱抵抗(\theta_{ja})</td>
<td>(\theta_{ja} = 26°C/W)</td>
</tr>
<tr>
<td>熱特性(\psi_{jt})</td>
<td>(\psi_{jt} = 7°C/W)</td>
</tr>
</tbody>
</table>

\(\theta_{ja}\)：ジャンクション温度と周囲温度間の熱抵抗
\(\psi_{jt}\)：ジャンクション温度とパッケージマーク面中央温度間の熱特性

許容損失と周囲温度の関係

測定用基板レイアウト
TO-252-5-P2 パッケージ外形図

* 青丸で囲んでいる裏面のタブは基板電位 (GND) です。基板側のグラウンドと接続することを推奨しますが、オープンにすることもあります。
本ドキュメント掲載の技術情報及び半導体のご使用につきましては以下の点にご注意ください。

1. 本ドキュメントに記載しております製品及び製品仕様は、改良などのため、予告なく変更することがあります。又、製造を中止する場合もありますので、ご採用にあたりましては当社又は販売店に最新の情報をお問合せください。
2. 文書による当社の承諾なしで、本ドキュメントの一部、又は全部をいかなる形でも転載又は複製されるときは、堅くお断り申し上げます。
3. 本ドキュメントに記載しております製品及び技術情報のうち、「外国為替及び外国貿易管理法」に該当するものを輸出される場合、又は国外に持ち出される場合は、同法に基づき日本国政府の輸出許可が必要です。
4. 本ドキュメントに記載しております製品及び技術情報は、製品を理解していただくためのものであり、その使用に関して当社及び第三者の知的財産権その他の権利に対する保証、又は実施権の許諾を意味するものではありません。
5. 本ドキュメントに記載しております製品は、車載用途向けのご使用を想定しておりますが、ご使用の際には品質レベルの確認が必要ですので、必ず事前に当社又は販売店までご相談ください。
6. 当社は品質、信頼性の向上に努めておりますが、半導体製品はある確率で故障が発生します。故障の結果として人身事故、火災事故、社会的な損害等を生じさせない冗長設計、延焼対策設計、誤動作防止設計等安全設計に十分ご留意ください。誤った使用又は不適切な使用に起因するいかなる損害等についても、当社は責任を負いかねますのでご了承ください。
7. 本ドキュメントに記載しております製品は、耐放射線設計はなされておりません。
8. X線照射により製品の機能・特性に影響を及ぼす場合があるため、評価段階で機能・特性を確認の上でご使用ください。
9. WLCSPPパッケージの製品は、遮光状態でご使用ください。光照射環境下（動作、保管中含む）では、機能・特性に影響を及ぼす場合があるためご注意ください。
10. パッケージ捺印は、画像認識装置の仕様によって文字認識に差が生じることがあります。画像認識装置にて文字認識をする場合は、事前に弊社販売店または弊社営業担当者までお問い合わせください。
11. 本ドキュメント記載製品に関する詳細についてのお問合せ、その他お気付きの点がございましたら当社又は販売店までご照会ください。

弊社は地球環境保全の観点から環境負荷物質の低減に取り組んでいます。
2006年4月1日以降、弊社はRoHS指令に適合した製品を提供しています。また、2012年4月1日以降は、ハロゲンフリー製品を提供しています。

RoHS Compliant
Halogen Free

RICOH リコー電子デバイス株式会社

弊社デバイスに関する詳しい内容をよりお知りになりたい方は下記へアクセスしてください。
https://www.e-devices.ricoh.co.jp/

詳細情報
https://www.ricoh.co.jp/jp/environment/rohs/

お問い合わせ・ご用命は…

日本本社
〒222-8530 神奈川県横浜市港北区新横浜3-2-3
050(3814)7090（直） FAX 045(474)0074

西日本
〒563-8501 大阪府池田市昭栄町13-1
072(748)6262（直） FAX 072(753)2120

名古屋
〒451-6010 愛知県名古屋市西区千代町6-1
名古屋ルーチェタワー 10F
080(9265)6941（直）
Email: zredc_nagoya_sales_office@e-devices.ricoh.co.jp