Device: **Power Management ICs**

It is reported failure rate as follows. This is based on JIS-C5003.

Reliability result of High temperature bias test.

\[Ta = 125 \degree C \]
\[T = 1000h \]
\[N = 320pcs. \]
\[R = 0pc. \]

Device Hours = \(320 \times 1000 = 320000 \) (h)

Activation energy (\(\text{Ea} \)) = 0.7eV, Boltzmann constant (\(k \)) = \(8.617 \times 10^{-5} \) (eV/K), Confidence level= 60%

Case1: Operating temperature \(Ta = 40 \degree C \)

Temperature acceleration factor (\(L \))

\[= \exp \left(\frac{\text{Ea}}{k} \times \left(\frac{1}{T1} - \frac{1}{T2} \right) \right) \]
\[= \exp \left(\frac{0.7}{(8.617 \times 10^{-5})\times(1/(125+273)-1/(40+273))} \right) \]
\[= 0.0039 \]

Equivalent time = \(320000/0.0039 = 0.816 \times 10^8 \) (h)

Failure rate (\(\lambda \)) = \(0.917/(0.816 \times 10^8) \)

\[= 11 \times 10^{-9} = 11 \text{ FIT} \]

\(\text{MTTF} = 8.9 \times 10^7 \text{ (h)} \)

Case2: Operating temperature \(Ta = 55 \degree C \)

Temperature acceleration factor (\(L \))

\[= \exp \left(\frac{0.7}{(8.617 \times 10^{-5})\times(1/(125+273)-1/(55+273))} \right) \]
\[= 0.0128 \]

Equivalent time = \(320000/0.0128 = 0.249 \times 10^8 \) (h)

Failure rate (\(\lambda \)) = \(0.917/(0.249 \times 10^8) \)

\[= 37 \times 10^{-9} = 37 \text{ FIT} \]

\(\text{MTTF} = 2.72 \times 10^7 \text{ (h)} \)