RP201x SERIES

3-MODE 150mA LDO REGULATOR

OUTLINE

The RP201x Series consist of CMOS-based voltage regulator ICs with high output voltage accuracy, low dropout voltage and low supply current. These ICs perform with the chip enable function and realize a standby mode with ultra low supply current. To prevent the destruction by over current, the current limit circuit is included. The RP201x Series have 3-mode. One is standby mode with CE pin. Other two modes are realized with ECO Function. Fast Response Mode (Fast Mode) and Fast and Low Power auto-change Mode (Auto ECO Mode) are alternative with Auto Eco pin (AE pin). Supply current of IC itself at light load is automatically reduced at Auto ECO Mode compared with Fast Mode. The output voltage is maintained between Fast Mode and Auto ECO Mode.

Without AE pin type is also available. It is an LDO regulator with Auto ECO mode. (RP201Z in WLCSP.)

Since the packages for these ICs are SOT-23-5, SC-88A, thin DFN(PLP)1212-6, and WLCSP-4-P5, high density mounting of the ICs on boards is possible. RP201Q (SC-88A), RP201K (DFN(PLP)1212-6) and RP201N (SOT-23-5) has AE pin, then if the AE pin is "H", Fast Mode is available. If the AE pin is set at "L" level, Auto ECO Mode operation is available.

FEATURES

- Supply Current (Low power Mode).............................. Typ. 1.0μA (Vout ≤ 1.85V)
- Supply Current (Fast Mode)... Typ. 55μA
- Supply Current (Standby Mode)................................. Typ. 0.1 μA
- Ripple Rejection.. Typ. 70dB (f=1kHz)
- Input Voltage Range ... 1.4V to 5.25V
- Output Voltage Range... 0.8V to 4.0V (0.1V steps)
 (For other voltages, please refer to MARK INFORMATIONS.)
- Output Voltage Accuracy.. ±1.0% (Vout > 2.0V, T\text{opt}=25\degree C)
- Temperature-Drift Coefficient of Output Voltage........... Typ. ±50ppm/°C
- Dropout Voltage... Typ. 0.12V (Iout=150mA, Vout=2.8V)
- Line Regulation.. Typ. 0.02%/V
- Packages ... WLCSP-4-P5, DFN(PLP)1212-6, SC-88A, SOT-23-5
- Built-in Fold Back Protection Circuit Typ. 50mA (Current at short mode)
- Ceramic capacitors are recommended....................... 1.0μF or more

APPLICATIONS

- Power source for portable communication equipment.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.
RP201x
NO.EA-234-170126

BLOCK DIAGRAMS

RP201K/N/QxxxB

RP201Zxx1B

RP201Q (SC-88A) and RP201N (SOT-23-5) are the discontinued products as of January 2017. RP201Z (WLCSP-4-P5) is the non-promotional product as of March 2019.
SELECTION GUIDE

The output voltage, auto discharge function, and package, etc. for the ICs can be selected at the user’s request.

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Package</th>
<th>Quantity per Reel</th>
<th>Pb Free</th>
<th>Halogen Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP201Zxx1*-TR-F</td>
<td>WLCSP-4-P5</td>
<td>5,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RP201Kxx1*-TR</td>
<td>DFN(PLP)1212-6</td>
<td>5,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RP201Qxx2*-TR-FE</td>
<td>SC-88A</td>
<td>3,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RP201Nxx1*-TR-FE</td>
<td>SOT-23-5</td>
<td>3,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

xx: The output voltage can be designated in the range from 0.8V(08) to 4.0V(40) in 0.1V steps.
(For other voltages, please refer to MARK INFORMATIONS.)

* : The auto discharge function at off state are options as follows.
 (B) without auto discharge function at off state
 (D) with auto discharge function at off state
RP201x
NO.EA-234-170126

PIN CONFIGURATIONS

<table>
<thead>
<tr>
<th>Silicon Side</th>
<th>Bump Side</th>
<th>Top View</th>
<th>Bottom View</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLCSP-4-P5</td>
<td>DFN(PLP)1212-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC-88A</td>
<td>SOT-23-5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RP201Q (SC-88A) and RP201N (SOT-23-5) are the discontinued products as of January 2017. RP201Z (WLCSP-4-P5) is the non-promotional product as of March 2019.
PIN DESCRIPTIONS

- **WLCSP-4-P5**

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Symbol</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>V_{DD}</td>
<td>Input Pin</td>
</tr>
<tr>
<td>A2</td>
<td>V_{OUT}</td>
<td>Output Pin</td>
</tr>
<tr>
<td>B1</td>
<td>CE</td>
<td>Chip Enable Pin ("H" Active)</td>
</tr>
<tr>
<td>B2</td>
<td>GND</td>
<td>Ground Pin</td>
</tr>
</tbody>
</table>

- **DFN(PLP)1212-6**

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Symbol</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AE</td>
<td>Auto ECO Pin</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>3</td>
<td>CE</td>
<td>Chip Enable Pin ("H" Active)</td>
</tr>
<tr>
<td>4</td>
<td>V_{DD}</td>
<td>Input Pin</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
<td>No Connection</td>
</tr>
<tr>
<td>6</td>
<td>V_{OUT}</td>
<td>Output Pin</td>
</tr>
</tbody>
</table>

- **SC-88A**

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Symbol</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AE</td>
<td>Auto ECO Pin</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>3</td>
<td>V_{OUT}</td>
<td>Output Pin</td>
</tr>
<tr>
<td>4</td>
<td>V_{DD}</td>
<td>Input Pin</td>
</tr>
<tr>
<td>5</td>
<td>CE</td>
<td>Chip Enable Pin ("H" Active)</td>
</tr>
</tbody>
</table>

- **SOT-23-5**

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Symbol</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_{DD}</td>
<td>Input Pin</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>3</td>
<td>CE</td>
<td>Chip Enable Pin ("H" Active)</td>
</tr>
<tr>
<td>4</td>
<td>AE</td>
<td>Auto ECO Pin</td>
</tr>
<tr>
<td>5</td>
<td>V_{OUT}</td>
<td>Output Pin</td>
</tr>
</tbody>
</table>
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>Input Voltage</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>VCE</td>
<td>Input Voltage (CE Pin)</td>
<td>−0.3 to 6.0</td>
<td>V</td>
</tr>
<tr>
<td>VAE</td>
<td>Input Voltage (AE Pin)</td>
<td>−0.3 to 6.0</td>
<td>V</td>
</tr>
<tr>
<td>VOUT</td>
<td>Output Voltage</td>
<td>−0.3 to VIN+0.3</td>
<td>V</td>
</tr>
<tr>
<td>IOUT</td>
<td>Output Current</td>
<td>400</td>
<td>mA</td>
</tr>
<tr>
<td>PD</td>
<td>Power Dissipation (WLCSP-4-P5) *</td>
<td>278</td>
<td>mW</td>
</tr>
<tr>
<td>PD</td>
<td>Power Dissipation (DFN(PLP)1212-6) *</td>
<td>400</td>
<td>mW</td>
</tr>
<tr>
<td>PD</td>
<td>Power Dissipation (SC-88A) *</td>
<td>380</td>
<td>mW</td>
</tr>
<tr>
<td>PD</td>
<td>Power Dissipation (SOT-23-5) *</td>
<td>420</td>
<td>mW</td>
</tr>
<tr>
<td>T_{opt}</td>
<td>Operating Temperature Range</td>
<td>−40 to 85</td>
<td>°C</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>Storage Temperature Range</td>
<td>−55 to 125</td>
<td>°C</td>
</tr>
</tbody>
</table>

*) For Power Dissipation, please refer to PACKAGE INFORMATION.

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.
ELECTRICAL CHARACTERISTICS

\(V_{IN} = \text{Set } V_{OUT} + 1V, I_{OUT} = 1mA, C_{IN} = C_{OUT} = 1\mu F, \text{ unless otherwise noted.} \)

The specification is checked and guaranteed by design engineering at \(-40^\circ C \leq T_{OPT} \leq 85^\circ C\).

### Symbol	Item	Conditions	Min.	Typ.	Max.	Unit
\(V_{OUT} \)	Output Voltage (Fast Mode)	\(I_{OUT} = 5mA \)				
\(T_{OPT} = 25^\circ C \)	\(V_{OUT} > 2.0V \)	\(\times 0.99 \)	\(\times 1.00 \)	V		
		\(V_{OUT} \leq 2.0V \)	\(-20 \)	20	mV	
	\(I_{OUT} = 5mA \)					
\(-40^\circ C \leq T_{OPT} \leq 85^\circ C \)	\(V_{OUT} > 2.0V \)	\(\times 0.973 \)	\(\times 1.015 \)	V		
		\(V_{OUT} \leq 2.0V \)	\(-50 \)	30	mV	
\(I_{OUT} \)	Output Current		\(150 \)	mA		
\(\Delta V_{OUT} / \Delta I_{OUT} \)	Load Regulation	\(1mA \leq I_{OUT} \leq 10mA \)	\(V_{OUT} > 2.0V \)	\(-1.0 \)	1.0	%
		\(V_{OUT} \leq 2.0V \)	\(-20 \)	20	mV	
	\(10mA \leq I_{OUT} \leq 150mA \)		18	40	mV	
\(V_{DF} \)	Dropout Voltage	\(I_{OUT} = 150mA \)	\(0.8V \leq V_{OUT} < 0.9V \)	\(+4 \)	V	
		\(0.9V \leq V_{OUT} < 1.0V \)	\(+4 \)	V		
		\(1.0V \leq V_{OUT} < 1.5V \)	0.24	0.40	V	
		\(1.5V \leq V_{OUT} < 2.6V \)	0.17	0.25	V	
		\(2.6V \leq V_{OUT} \leq 4.0V \)	0.12	0.18	V	
\(I_{SS1} \)	Supply Current (Low Power Mode)	\(I_{OUT} = 0mA \)	\(V_{OUT} \leq 1.85V \)	1.0	4.0	mA
		\(V_{OUT} > 1.85V \)	1.5	4.0	mA	
\(I_{SS2} \)	Supply Current (Fast Mode)	\(I_{OUT} = 10mA \)	55	mA		
\(I_{STANDBY} \)	Standby Current	\(V_{CE} = \text{GND} \)	0.1	1.0	mA	
\(I_{OUTH} \)	Fast Mode switch-over current	\(I_{OUT} = \text{Light load to Heavy load} \)	8.0	mA		
\(I_{OUTL} \)	Low Power Mode switch-over current	\(I_{OUT} = \text{Heavy load to Light load} \)	1.0	2.0	mA	
\(\Delta V_{OUT} / \Delta V_{IN} \)	Line Regulation	\(V_{OUT} + 0.5V \leq V_{IN} \leq 5.0V, V_{IN} \geq 1.4V \)	\(I_{OUT} = 1mA \)			
		(Low Power Mode)		0.50	%/V	
		\(I_{OUT} = 10mA \)				
		(Fast Mode)		0.02	0.20	%/V
\(RR \)	Ripple Rejection (Fast Mode)	\(f = 1kHz, \text{ Ripple } 0.2Vp-p \)				
		\(V_{IN} = V_{OUT} + 1V, I_{OUT} = 30mA \)				
		(In case that \(V_{OUT} \leq 1.2V, V_{IN} = 2.2V \))		70	dB	
\(V_{IN} \) | Input Voltage | | 1.40 | 5.25 | V
\(\Delta V_{OUT} / \Delta T_{OPT} \) | Output Voltage Temperature Coefficient | \(-40^\circ C \leq T_{OPT} \leq 85^\circ C \) | | \(\pm 50 \) | ppm / ^\circ C
\(I_{SC} \) | Short Current Limit | \(V_{OUT} = 0V \) | 50 | mA
\(I_{CEPD} \) | CE Pull-down Constant Current | | 0.1 | mA
\(V_{CEH} \) | CE Input Voltage "H" | 1.0 | V
RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

### Symbol	Item	Conditions	Min.	Typ.	Max.	Unit	Notes
V_{CEL} | CE Input Voltage "L" | | | 0.4 | V | -
I_{AEPPD} | AE Pull-down Constant Current*3 | | | 0.1 | μA | -
V_{AEH} | AE Input Voltage "H"*3 | | | 1.0 | V | -
V_{AEL} | AE Input Voltage "L"*3 | | | 0.4 | V | -
R_{LOW} | Low Output Nch Tr. ON Resistance (of D version) | V_{IN}=4.0V, V_{CE}=0V | | 50 | Ω | -

All of units are tested and specified under load conditions such that Tj=T_{opt}=25°C except for Ripple Rejection, Output Voltage Temperature Coefficient.

*1) The value of supply current is excluding the Pull-down constant current of CE Pin and AE Pin.
*2) The maximum Input Voltage of the ELECTRICAL CHARACTERISTICS is 5.25V. In case of exceeding this specification, the IC must be operated on condition that the Input Voltage is up to 5.5V and the total operating time is within 500hrs.
*3) Applied to RP201K/N/Q
*4) VIN ≥ 1.4V condition is dominant against this specification.
TYPICAL APPLICATION

![Circuit Diagram]

(External Components)
C1, C2 : Ceramic Capacitor 1.0μF MURATA: GRM155B31A105KE15

TECHNICAL NOTES

When using these ICs, consider the following points:

Phase Compensation

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor C2 with 1.0μF or more and good ESR (Equivalent Series Resistance).
(Note: If additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.)

PCB Layout

Make VDD and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor C1 with a capacitance value as much as 1.0μF or more between VDD and GND pin, and as close as possible to the pins.

Set external components, especially the output capacitor C2, as close as possible to the ICs, and make wiring as short as possible.

Impedance of Input Pin (CE Pin and AE Pin)

In those ICs, there is a pull-down constant current in the CE Pin and the AE Pin. However, if those pins are floating and wired long that produce the noise environment, it might miss-operation of ICs. For this purpose, please make sure enough evaluation of ICs.
TEST CIRCUITS

Basic Test Circuit

Test Circuit for Supply Current

Test Circuit for Ripple Rejection

Test Circuit for Load Transient Response

RP201Q (SC-88A) and RP201N (SOT-23-5) are the discontinued products as of January 2017. RP201Z (WLCSP-4-P5) is the non-promotional product as of March 2019.
TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current (C1=1.0μF, C2=1.0μF, Topt=25°C)

2) Output Voltage vs. Input Voltage (C1=1.0μF, C2=1.0μF, Topt=25°C)
RP201x
NO.EA-234-170126

3) Supply Current vs. Input Voltage (C1=1.0μF, C2=1.0μF, T_{opt}=25°C)

RP201x28xx

RP201x40xx

RP201Q (SC-88A) and RP201N (SOT-23-5) are the discontinued products as of January 2017.

RP201Z (WLCSP-4-P5) is the non-promotional product as of March 2019.
4) Supply Current vs. Output Current (C1=1.0μF, C2=1.0μF, T_{opt}=25°C)

RP201x08xx

- **V_{IN}=1.8V**

RP201x18xx

- **V_{IN}=2.8V**

RP201x28xx

- **V_{IN}=3.8V**

RP201x40xx

- **V_{IN}=5.0V**

5) Output Voltage vs. Temperature (C1=1.0μF, C2=1.0μF, I_{OUT}=5mA)

RP201x08xx

- **V_{IN}=1.8V**

RP201x18xx

- **V_{IN}=2.8V**

RP201Q (SC-88A) and RP201N (SOT-23-5) are the discontinued products as of January 2017.
RP201Z (WLCSP-4-P5) is the non-promotional product as of March 2019.
6) Supply Current vs. Temperature (C1=1.0μF, C2=1.0μF)

RP201x28xx
(Auto ECO Low Power Mode)

RP201x40xx
(Auto ECO Low Power Mode)
RP201x

7) Dropout Voltage vs. Output Current (C1=1.0μF, C2=1.0μF)

RP201x08xx (Fixed Fast Mode)

Vin=1.8V, AE=1.8V

RP201x18xx (Fixed Fast Mode)

Vin=2.8V, AE=2.8V

RP201x28xx (Fixed Fast Mode)

Vin=3.8V, AE=3.8V

RP201x40xx (Fixed Fast Mode)

Vin=5V, AE=5V

RP201Q (SC-88A) and RP201N (SOT-23-5) are the discontinued products as of January 2017. RP201Z (WLCSP-4-P5) is the non-promotional product as of March 2019.
8) Dropout Voltage vs. Set Output Voltage

RP201x10xx

RP201x15xx

RP201x26xx

RP201x40xx

RP201Q (SC-88A) and RP201N (SOT-23-5) are the discontinued products as of January 2017.
RP201Z (WLCSP-4-P5) is the non-promotional product as of March 2019.
9) Ripple Rejection vs. Input Bias Voltage (C1=none, C2=1.0\mu F, Ripple=0.2Vp-p, Topt=25°C)

RP201x28xx
(Auto ECO Low Power Mode)

\[
\begin{array}{c}
\text{IOUT}=1\text{mA} \\
\text{AE}=0V
\end{array}
\]

![Graph showing ripple rejection vs. input voltage for RP201x28xx in low power mode.]

RP201x28xx
(Fixed Fast Mode)

\[
\begin{array}{c}
\text{IOUT}=1\text{mA} \\
\text{AE}=\text{Set VOUT}+1V
\end{array}
\]

![Graph showing ripple rejection vs. input voltage for RP201x28xx in fixed fast mode.]

RP201x28xx
(Auto ECO Fast Mode)

\[
\begin{array}{c}
\text{IOUT}=30\text{mA} \\
\text{AE}=0V
\end{array}
\]

![Graph showing ripple rejection vs. input voltage for RP201x28xx in auto ECO fast mode 30mA.]

RP201x28xx
(Auto ECO Fast Mode)

\[
\begin{array}{c}
\text{IOUT}=50\text{mA} \\
\text{AE}=0V
\end{array}
\]

![Graph showing ripple rejection vs. input voltage for RP201x28xx in auto ECO fast mode 50mA.]

10) Ripple Rejection vs. Frequency (C1=none, C2=1.0\mu F, Ripple=0.2Vp-p, Topt=25°C)

RP201x08xx

\[
\begin{array}{c}
\text{VIN}=1.8V+0.2Vp-p
\end{array}
\]

![Graph showing ripple rejection vs. frequency for RP201x08xx 1mA in low and high AE.]

RP201x18xx

\[
\begin{array}{c}
\text{VIN}=2.8V+0.2Vp-p
\end{array}
\]

![Graph showing ripple rejection vs. frequency for RP201x18xx 1mA in low and high AE.]
11) Input Transient Response (C1=none, C2=1.0μF, tr=tf=5μs, T_{opt}=25°C)

RP201x28xx

(Auto ECO Low Power Mode)

\[V_{IN}=3.8V+0.2V_{p-p} \]

- **Output Voltage V_{OUT} (V)**
 - **Input Voltage**
 - **Output Voltage**
 - **Time t (ms)**

RP201x40xx

(Auto ECO Low Power Mode)

\[V_{IN}=5.0V+0.2V_{p-p} \]

- **Output Voltage V_{OUT} (V)**
 - **Input Voltage**
 - **Output Voltage**
 - **Time t (ms)**

RP201Q (SC-88A) and RP201N (SOT-23-5) are the discontinued products as of January 2017. RP201Z (WLCSP-4-P5) is the non-promotional product as of March 2019.
12) Load Transient Response (C1=1.0μF, C2=1.0μF, tr=τf=5μs, T_{opt}=25°C)

RP201x08xx (Fixed Fast Mode)
- VIN=1.8V ↔ 2.8V
- I{OUT}=30mA

RP201x18xx (Fixed Fast Mode)
- VIN=2.8V ↔ 3.8V
- I{OUT}=30mA

RP201x28xx (Fixed Fast Mode)
- VIN=3.8V ↔ 4.8V
- I{OUT}=30mA

RP201x40xx (Fixed Fast Mode)
- VIN=4.5V ↔ 5.25V
- I{OUT}=30mA

RP201Q (SC-88A) and RP201N (SOT-23-5) are the discontinued products as of January 2017.
RP201Z (WLCSP-4-P5) is the non-promotional product as of March 2019.
RP201x

RP201x08xx (Auto ECO Fast Mode)

*VIN=1.8V
AE=0V*

RP201x18xx (Auto ECO Fast Mode)

*VIN=2.8V
AE=0V*

RP201x08xx (Fixed Fast Mode)

*VIN=1.8V
AE=1.8V*

RP201x18xx (Fixed Fast Mode)

*VIN=2.8V
AE=2.8V*

RP201Q (SC-88A) and RP201N (SOT-23-5) are the discontinued products as of January 2017. RP201Z (WLCSP-4-P5) is the non-promotional product as of March 2019.
RP201x

RP201x08xx (Fixed Fast Mode)

- $V_{IN}=1.8\text{V}$
- $AE=1.8\text{V}$

RP201x18xx (Fixed Fast Mode)

- $V_{IN}=2.8\text{V}$
- $AE=2.8\text{V}$

RP201x28xx (Fixed Fast Mode)

- $V_{IN}=3.8\text{V}$
- $AE=0\text{V}$

RP201x40xx (Fixed Fast Mode)

- $V_{IN}=5.0\text{V}$
- $AE=0\text{V}$

RP201x28xx

- $V_{IN}=3.8\text{V}$
- $AE=3.8\text{V}$

RP201x40xx

- $V_{IN}=5.0\text{V}$
- $AE=5.0\text{V}$

RP201Q (SC-88A) and RP201N (SOT-23-5) are the discontinued products as of January 2017.

RP201Z (WLCSP-4-P5) is the non-promotional product as of March 2019.
RP201x

NO.EA-234-170126

RP201x28xx
(Fixed Fast Mode)

\[V_{IN}=3.8V \]
\[AE=3.8V \]

Output Voltage \(V_{OUT} \) (V)

Output Current \(I_{OUT} \) (mA)

Time \(t \) (\(\mu s \))

0 10 20 30 40 50 60 70 80 90

2.59
2.64
2.69
2.74
2.79
2.84
2.89

0.1mA 100mA

Output Voltage

RP201x40xx
(Fixed Fast Mode)

\[V_{IN}=5.0V \]
\[AE=5.0V \]

Output Voltage \(V_{OUT} \) (V)

Output Current \(I_{OUT} \) (mA)

Time \(t \) (\(\mu s \))

0 10 20 30 40 50 60 70 80 90

3.80
3.85
3.90
3.95
4.00
4.05

0.1mA 100mA

Output Voltage

Auto ECO (Low Power Mode→Fast Mode)

\[V_{IN}=3.8V \]
\[AE=0V \]

Output Voltage \(V_{OUT} \) (V)

Output Current \(I_{OUT} \) (mA)

Time \(t \) (\(\mu s \))

0 10 20 30 40 50 60 70 80 90

2.59
2.64
2.69
2.74
2.79
2.84
2.89

0.1mA 100mA

Output Voltage

Auto ECO (Low Power Mode→Fast Mode)

\[V_{IN}=5.0V \]
\[AE=0V \]

Output Voltage \(V_{OUT} \) (V)

Output Current \(I_{OUT} \) (mA)

Time \(t \) (\(\mu s \))

0 10 20 30 40 50 60 70 80 90

3.80
3.85
3.90
3.95
4.00
4.05

0.1mA 100mA

Output Voltage

Auto ECO Fast Mode

\[V_{IN}=3.8V \]
\[AE=0V \]

Output Voltage \(V_{OUT} \) (V)

Output Current \(I_{OUT} \) (mA)

Time \(t \) (\(\mu s \))

0 20 40 60 80 100 120 140 160 180

2.74
2.78
2.80
2.82
2.84

50mA 100mA

Output Voltage

Auto ECO Fast Mode

\[V_{IN}=5.0V \]
\[AE=0V \]

Output Voltage \(V_{OUT} \) (V)

Output Current \(I_{OUT} \) (mA)

Time \(t \) (\(\mu s \))

0 20 40 60 80 100 120 140 160 180

3.91
3.95
3.99
4.01
4.03
4.05
4.07

50mA 100mA

Output Voltage

RP201Q (SC-88A) and RP201N (SOT-23-5) are the discontinued products as of January 2017.

RP201Z (WLCSP-4-P5) is the non-promotional product as of March 2019.
13) AE Switch Transient Response (C1=1.0\,\mu F,\, C2=1.0\,\mu F,\, tr=0.5\,\mu s,\, T_{opt}=25^\circ C)

RP201x08xx

RP201x18xx

RP201x28xx

RP201x40xx

14) Turn On Speed with CE pin (C1=1.0\,\mu F,\, C2=1.0\,\mu F,\, T_{opt}=25^\circ C)

RP201x08xx

RP201x18xx

RP201Q (SC-88A) and RP201N (SOT-23-5) are the discontinued products as of January 2017. RP201Z (WLCSP-4-P5) is the non-promotional product as of March 2019.
15) Turn Off Speed with CE pin (D Version) \((C_1=1.0\mu F, C_2=1.0\mu F, T_{opt}=25^\circ C)\)

RP201x28xx

\[V_{IN}=3.8V\]

RP201x40xx

\[V_{IN}=5.0V\]

RP201x08xx

\[V_{IN}=1.8V\]

RP201x18xx

\[V_{IN}=2.8V\]

RP201x28xx

\[V_{IN}=3.8V\]

RP201x40xx

\[V_{IN}=5.0V\]

RP201Q (SC-88A) and RP201N (SOT-23-5) are the discontinued products as of January 2017.

RP201Z (WLCSP-4-P5) is the non-promotional product as of March 2019.
ESR vs. Output Current

Ceramic type output capacitor is recommended for this series; however, the other output capacitors with low ESR also can be used. The relations between I_{OUT} (Output Current) and ESR of an output capacitor are shown below. The conditions when the white noise level is under 40μV (Avg.) are marked as the hatched area in the graph.

Measurement conditions
Frequency Band: 10Hz to 2MHz
Temperature: -40°C to 85°C
C1, C2: 1.0μF
1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.

2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.

3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.

4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty or as a grant of license under patents or other industrial rights of Ricoh or any third party, or as a guarantee that the products will function in a particular manner or be suitable for a particular purpose.

5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a Ricoh product in an application requiring extreme reliability and/or safety, such as aerospace equipment, nuclear reactor control systems, communication equipment and transportation equipment, are requested to inform us of such use and to use the product after verifying it can satisfy their requirements.

6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundant design, fail-safe design. We recommend that customers use our products in combination with products manufactured by other companies.

7. Anti-radiation design is not implemented in the products described in this document.

8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.

9. WL CSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.

10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.

11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.

Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

https://www.e-devices.ricoh.co.jp/en/