OUTLINE

The RP102x Series are CMOS-based voltage regulator ICs with high output voltage accuracy, extremely low supply current, low ON-resistance, and high ripple rejection. Each of these ICs consists of a voltage reference unit, an error amplifier, a resistor-net for voltage setting, a current limit circuit and a chip enable circuit.

These ICs perform with low dropout voltage and "chip enable" function. The line transient response and load transient response of the RP102x Series are excellent, thus these ICs are very suitable for the power supply for hand-held communication equipment.

The output voltage of these ICs is fixed with high accuracy. Since the packages for these ICs are SOT-23-5, DFN(PLP)1820-6, and WLCSP-4-P2, therefore high density mounting of the ICs on boards is possible.

FEATURES

- Supply Current .. Typ. 50μA
- Standby Mode .. Typ. 0.1μA
- Dropout Voltage .. Typ. 0.12V (IOUT=300mA, VOUT=2.8V)
- Ripple Rejection .. Typ. 80dB (f=1kHz)
- Temperature-Drift Coefficient of Output Voltage... Typ. ±20ppm/°C
- Line Regulation ... Typ. 0.02%/V
- Output Voltage Accuracy.. Typ. ±0.8%
- Packages .. WLCSP-4-P2, DFN(PLP)1820-6, SOT-23-5
- Input Voltage Range ... 1.7V to 5.25V
- Output Voltage Range... 1.2V to 3.3V (0.1V steps)
 (For other voltages, please refer to MARK INFORMATIONS.)
- Built-in Fold Back Protection Circuit Typ. 50mA (Current at short mode)
- Ceramic capacitors are recommended to be used with this IC Cin=Cout=1μF or more

APPLICATIONS

- Power source for portable communication equipment.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.
BLOCK DIAGRAMS

![RP102xxx1B Block Diagram](image1)

![RP102xxx1D Block Diagram](image2)

SELECTION GUIDE

The output voltage, auto discharge function, package, and the taping type, etc. for the ICs can be selected at the user’s request.

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Package</th>
<th>Quantity per Reel</th>
<th>Pb Free</th>
<th>Halogen Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP102Zxx1*-TR-F</td>
<td>WLCSP-4-P2</td>
<td>5,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RP102Kxx1*-TR</td>
<td>DFN(PLP)1820-6</td>
<td>5,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RP102Nxx1*-TR-FE</td>
<td>SOT-23-5</td>
<td>3,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

xx: The output voltage can be designated in the range from 1.2V(12) to 3.3V(33) in 0.1V steps.
(For other voltages, please refer to MARK INFORMATIONS.)

- CE pin polarity and auto discharge function at off state are options as follows.
 - (B) "H" active, without auto discharge function at off state
 - (D) "H" active, with auto discharge function at off state
PIN CONFIGURATIONS

- **WLCSP-4-P2**
 - Mark Side
 - Bump Side
 - Top View
 - Bottom View

- **DFN(PLP)1820-6**
 - Top View
 - Bottom View

- **SOT-23-5**

PIN DESCRIPTION

- **WLCSP-4-P2**

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Symbol</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>VDD</td>
<td>Input Pin</td>
</tr>
<tr>
<td>A2</td>
<td>VOUT</td>
<td>Output Pin</td>
</tr>
<tr>
<td>B1</td>
<td>CE</td>
<td>Chip Enable Pin (“H” Active)</td>
</tr>
<tr>
<td>B2</td>
<td>GND</td>
<td>Ground Pin</td>
</tr>
</tbody>
</table>

- **DFN(PLP)1820-6**

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Symbol</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VOUT</td>
<td>Output Pin (^*2)</td>
</tr>
<tr>
<td>2</td>
<td>VOUT</td>
<td>Output Pin (^*2)</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>4</td>
<td>CE</td>
<td>Chip Enable Pin (“H” Active)</td>
</tr>
<tr>
<td>5</td>
<td>VDD</td>
<td>Input Pin (^*2)</td>
</tr>
<tr>
<td>6</td>
<td>VDD</td>
<td>Input Pin (^*2)</td>
</tr>
</tbody>
</table>

\(^*1\) Tab is GND level. (They are connected to the reverse side of this IC.)

The tab is better to be connected to the GND, but leaving it open is also acceptable.

\(^*2\) No.1 pin and No.2 pin, No.5 pin and No.6 pin of DFN(PLP)1820-6 package must be wired when it is mounted on board.

- **SOT-23-5**

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Symbol</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDD</td>
<td>Input Pin</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>3</td>
<td>CE</td>
<td>Chip Enable Pin (“H” Active)</td>
</tr>
<tr>
<td>4</td>
<td>NC</td>
<td>No Connection</td>
</tr>
<tr>
<td>5</td>
<td>VOUT</td>
<td>Output Pin</td>
</tr>
</tbody>
</table>
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>Input Voltage</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>VCE</td>
<td>Input Voltage (CE Pin)</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>VOUT</td>
<td>Output Voltage</td>
<td>–0.3 to VIN+0.3</td>
<td>V</td>
</tr>
<tr>
<td>IOUT</td>
<td>Output Current</td>
<td>400</td>
<td>mA</td>
</tr>
<tr>
<td>PD</td>
<td>Power Dissipation (WLCSP-4-P2) *</td>
<td>530</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td>Power Dissipation (SOT-23-5) *</td>
<td>420</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td>Power Dissipation (DFN(PLP)1820-6) *</td>
<td>880</td>
<td>mW</td>
</tr>
<tr>
<td>T_{opt}</td>
<td>Operating Temperature Range</td>
<td>–40 to 85</td>
<td>°C</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>Storage Temperature Range</td>
<td>–55 to 125</td>
<td>°C</td>
</tr>
</tbody>
</table>

*) For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field.
The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge.
And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.
ELECTRICAL CHARACTERISTICS

- **RP102xxx1B/D**

 \(V_{\text{IN}} = \text{Set } V_{\text{OUT}} + 1\text{V for } V_{\text{OUT}} \text{ options greater than } 1.5\text{V. } V_{\text{IN}} = 2.5\text{V for } V_{\text{OUT}} \leq 1.5\text{V.} \)

 \(I_{\text{OUT}} = 1\text{mA, } C_{\text{IN}} = C_{\text{OUT}} = 1\mu\text{F, unless otherwise noted.} \)

- **Topt=25°C**

Electrical Characteristics by Output Voltage

<table>
<thead>
<tr>
<th>Output Voltage (V_{\text{OUT}} \text{ (V)})</th>
<th>Dropout Voltage (V_{\text{DIFF}} \text{ (V)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2V (\leq V_{\text{OUT}} < 1.5\text{V})</td>
<td>0.145</td>
</tr>
<tr>
<td>1.5V (\leq V_{\text{OUT}} < 1.7\text{V})</td>
<td>0.110</td>
</tr>
<tr>
<td>1.7V (\leq V_{\text{OUT}} < 2.0\text{V})</td>
<td>0.100</td>
</tr>
<tr>
<td>2.0V (\leq V_{\text{OUT}} < 2.5\text{V})</td>
<td>0.085</td>
</tr>
<tr>
<td>2.5V (\leq V_{\text{OUT}} < 2.8\text{V})</td>
<td>0.070</td>
</tr>
<tr>
<td>2.8V (\leq V_{\text{OUT}} \leq 3.3\text{V})</td>
<td>0.060</td>
</tr>
</tbody>
</table>

Note: The maximum Input Voltage of the ELECTRICAL CHARACTERISTICS is 5.25V. In case of exceeding this specification, the IC must be operated on condition that the Input Voltage is up to 5.5V and the total operating time is within 500hrs.
TYPICAL APPLICATION

![Diagram of RP102x Series](image)

(External Components)

C2 1.0µF MURATA: GRM155B31A105KE15

TECHNICAL NOTES

When using these ICs, consider the following points:

Phase Compensation

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor C2 with good frequency characteristics and ESR (Equivalent Series Resistance). (Note: If additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.)

PCB Layout

Make VDD and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor C1 with a capacitance value as much as 1.0µF or more between VDD and GND pin, and as close as possible to the pins.

Set external components, especially the output capacitor C2, as close as possible to the ICs, and make wiring as short as possible.
TEST CIRCUITS

Basic Test Circuit

Test Circuit for Supply Current

Test Circuit for Ripple Rejection

Test Circuit for Load Transient Response
TYPICAL CHARACTERISTIC

1) Output Voltage vs. Output Current (C\text{IN}=1.0\mu F, C\text{OUT}=1.0\mu F, T\text{opt}=25^\circ C)

![Graph of Output Voltage vs. Output Current (C\text{IN}=1.0\mu F, C\text{OUT}=1.0\mu F, T\text{opt}=25^\circ C)]

2) Output Voltage vs. Input Voltage (C\text{IN}=1.0\mu F, C\text{OUT}=1.0\mu F, T\text{opt}=25^\circ C)

![Graph of Output Voltage vs. Input Voltage (C\text{IN}=1.0\mu F, C\text{OUT}=1.0\mu F, T\text{opt}=25^\circ C)]
3) Supply Current vs. Input Voltage ($C_{\text{IN}}=1.0\mu F$, $C_{\text{OUT}}=1.0\mu F$, $T_{\text{opt}}=25^\circ C$)

![Graph showing supply current vs. input voltage for RP102x331x, RP102x121x, and RP102x251x.]
4) Output Voltage vs. Temperature \((C_{IN}=1.0 \mu F, C_{OUT}=1.0 \mu F, I_{OUT}=1mA) \)

RP102x121x

![Output Voltage vs. Temperature (VIN=2.2V)](image1)

RP102x251x

![Output Voltage vs. Temperature (VIN=3.5V)](image2)

RP102x331x

![Output Voltage vs. Temperature (VIN=4.3V)](image3)

5) Supply Current vs. Temperature \((C_{IN}=1.0 \mu F, C_{OUT}=1.0 \mu F, I_{OUT}=0mA) \)

RP102x121x

![Supply Current vs. Temperature (VIN=2.2V)](image4)

RP102x251x

![Supply Current vs. Temperature (VIN=3.5V)](image5)
6) Dropout Voltage vs. Output Current (C_{in}=1.0\mu F, C_{out}=1.0\mu F)
7) Dropout Voltage vs Set Output Voltage ($C_{IN}=1.0\mu F$, $C_{OUT}=1.0\mu F$, $T_{opt}=25^\circ C$)

![Graph showing Dropout Voltage vs Set Output Voltage](image)

8) Ripple Rejection vs. Input Bias Voltage ($C_{IN}=\text{none}$, $C_{OUT}=1.0\mu F$, Ripple=0.2Vp-p, $T_{opt}=25^\circ C$)

RP102x121x

![Graph showing Ripple Rejection vs. Input Voltage](image)

RP102x281x

![Graph showing Ripple Rejection vs. Input Voltage](image)
9) Ripple Rejection vs. Frequency \((C_{IN}=1.0\mu F, C_{OUT}=1.0\mu F, \text{Ripple}=0.2V_{p-p}) \)

RP102x121x

- \(V_{IN}=2.2V \)
- Ripple Rejection (dB)
- Frequency \(f \) (kHz)

RP102x251x

- \(V_{IN}=3.5V \)
- Ripple Rejection (dB)
- Frequency \(f \) (kHz)

RP102x331x

- \(V_{IN}=4.3V \)
- Ripple Rejection (dB)
- Frequency \(f \) (kHz)

RP102x121x

- \(V_{IN}=2.2V \)
- Ripple Rejection (dB)
- Frequency \(f \) (kHz)

RP102x251x

- \(V_{IN}=3.5V \)
- Ripple Rejection (dB)
- Frequency \(f \) (kHz)
10) Input Transient Response ($C_{in}=\text{none}$, $C_{out}=1.0\mu\text{F}$, $I_{out}=30\text{mA}$, $t_{r}=t_{f}=5\mu\text{s}$, $T_{opt}=25^\circ\text{C}$)

RP102x121x

RP102x251x

RP102x331x
11) Load Transient Response \((C_{\text{OUT}}=1.0\mu\text{F}, T_{\text{OPT}}=25^\circ\text{C})\)

RP102x121x

\begin{align*}
\text{Input Voltage} & = 2.2\text{V} \\
\text{Output Current} & = 50\text{mA} \rightarrow 100\text{mA} \\
\text{Output Voltage} & = 1.17 \rightarrow 1.20 \\
\text{Time} & = 0 \rightarrow 100 \mu\text{s}
\end{align*}

RP102x251x

\begin{align*}
\text{Input Voltage} & = 3.5\text{V} \\
\text{Output Current} & = 50\text{mA} \rightarrow 100\text{mA} \\
\text{Output Voltage} & = 2.47 \rightarrow 2.50 \\
\text{Time} & = 0 \rightarrow 100 \mu\text{s}
\end{align*}

RP102x331x

\begin{align*}
\text{Input Voltage} & = 3.5\text{V} \\
\text{Output Current} & = 50\text{mA} \rightarrow 100\text{mA} \\
\text{Output Voltage} & = 3.27 \rightarrow 3.30 \\
\text{Time} & = 0 \rightarrow 100 \mu\text{s}
\end{align*}

RP102x121x

\begin{align*}
\text{Input Voltage} & = 2.2\text{V} \\
\text{Output Current} & = 1\text{mA} \rightarrow 150\text{mA} \\
\text{Output Voltage} & = 1.10 \rightarrow 1.20 \\
\text{Time} & = 0 \rightarrow 100 \mu\text{s}
\end{align*}

RP102x251x

\begin{align*}
\text{Input Voltage} & = 3.5\text{V} \\
\text{Output Current} & = 1\text{mA} \rightarrow 150\text{mA} \\
\text{Output Voltage} & = 2.40 \rightarrow 2.50 \\
\text{Time} & = 0 \rightarrow 100 \mu\text{s}
\end{align*}
12) Turn On Speed with CE pin \((C_{IN}=1.0\mu F, C_{OUT}=1.0\mu F, T_{opt}=25^\circ C)\)

\begin{align*}
\text{RP102x121x} & \\
\text{RP102x121x} & \\
\text{RP102x121x}
\end{align*}
13) Turn OFF Speed with CE pin (D Version) ($C_{IN}=1.0 \mu F$, $C_{OUT}=1.0 \mu F$, $T_{opt}=25^\circ C$)
I\textsubscript{OUT}=300\text{mA}
ESR vs. Output Current

When using these ICs, consider the following points:

The relations between \(I_{\text{OUT}} \) (Output Current) and ESR of an output capacitor are shown below. The conditions when the white noise level is under 40\(\mu V \) (Avg.) are marked as the hatched area in the graph.

Measurement conditions
- Frequency Band: 10Hz to 2MHz
- Temperature: \(-40°C\) to \(85°C\)
PACKAGE INFORMATION

Power Dissipation (WLCSP-4-P2)

This specification is at mounted on board. Power Dissipation (Pd) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

Measurement Conditions

<table>
<thead>
<tr>
<th>Standard Land Pattern</th>
<th>Environment</th>
<th>Mounting on Board (Wind velocity=0m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Board Material</td>
<td>Glass cloth epoxy plastic (Double-sided)</td>
</tr>
<tr>
<td></td>
<td>Board Dimensions</td>
<td>40mm x 40mm x 1.6mm</td>
</tr>
<tr>
<td></td>
<td>Copper Ratio</td>
<td>Top side: Approx. 50%, Back side: Approx. 50%</td>
</tr>
<tr>
<td></td>
<td>Through-hole</td>
<td>φ0.5mm x 4pcs</td>
</tr>
</tbody>
</table>

Measurement Result (Ta=25°C)

<table>
<thead>
<tr>
<th>Standard Land Pattern</th>
<th>Power Dissipation</th>
<th>Thermal Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>530mW (Tjmax=125°C)</td>
<td>$\theta_{ja}=(125-25°C)/0.53W=189^\circ C/W$</td>
</tr>
<tr>
<td></td>
<td>662mW (Tjmax=150°C)</td>
<td></td>
</tr>
</tbody>
</table>

The above graph shows the Power Dissipation of the package based on Tjmax=125°C and Tjmax=150°C. Operating the IC in the shaded area in the graph might have an influence on its lifetime. Operating time must be within the time limit described in the table below, in case of operating in the shaded area.

<table>
<thead>
<tr>
<th>Operating Time (Operating 4 hours/day)</th>
<th>Estimated years</th>
</tr>
</thead>
<tbody>
<tr>
<td>13,000 hours</td>
<td>9 years</td>
</tr>
</tbody>
</table>
Package Dimensions (WLCSP-4-P2)

Mark Specifications (WLCSP-4-P2)

①②: Lot Number … Alphanumeric Serial Number
Power Dissipation (DFN(PLP)1820-6)

This specification is at mounted on board. Power Dissipation (Pd) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

Measurement Conditions

<table>
<thead>
<tr>
<th></th>
<th>Standard Land Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>Mounting on Board (Wind velocity=0m/s)</td>
</tr>
<tr>
<td>Board Material</td>
<td>Glass cloth epoxy plastic (Double-sided)</td>
</tr>
<tr>
<td>Board Dimensions</td>
<td>40mm x 40mm x 1.6mm</td>
</tr>
<tr>
<td>Copper Ratio</td>
<td>Top side: Approx. 50%, Back side: Approx. 50%</td>
</tr>
<tr>
<td>Through-hole</td>
<td>φ0.54mm x 30pcs</td>
</tr>
</tbody>
</table>

Measurement Result (Ta=25°C)

<table>
<thead>
<tr>
<th></th>
<th>Standard Land Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Dissipation</td>
<td>880mW(Tjmax=125°C)</td>
</tr>
<tr>
<td></td>
<td>1100mW(Tjmax=150°C)</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>θja=(125-25°C)/0.88W=114°C/W</td>
</tr>
</tbody>
</table>

The above graph shows the Power Dissipation of the package based on Tjmax=125°C and Tjmax=150°C. Operating the IC in the shaded area in the graph might have an influence on its lifetime.

Operating time must be within the time limit described in the table below, in case of operating in the shaded area.

<table>
<thead>
<tr>
<th>Operating Time (Operating 4 hours/day)</th>
<th>Estimated years</th>
</tr>
</thead>
<tbody>
<tr>
<td>13,000 hours</td>
<td>9 years</td>
</tr>
</tbody>
</table>
Package Dimensions (DFN(PLP)1820-6)

Mark Specifications (DFN(PLP)1820-6)

①②③④: Product Code … Refer to “RP102K Series Mark Specification Table”.
⑤⑥: Lot Number … Alphanumeric Serial Number
RP102K Series Mark Specification Table

PKG: DFN(PLP)1820-6

<table>
<thead>
<tr>
<th>Part Number</th>
<th>①</th>
<th>②</th>
<th>③</th>
<th>④</th>
<th>Vset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP102K121B</td>
<td>AC01</td>
<td>1.2V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K131B</td>
<td>AC02</td>
<td>1.3V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K151B</td>
<td>AC03</td>
<td>1.5V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K181B</td>
<td>AC04</td>
<td>1.8V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K251B</td>
<td>AC05</td>
<td>2.5V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K261B</td>
<td>AC06</td>
<td>2.6V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K281B</td>
<td>AC07</td>
<td>2.8V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K291B5</td>
<td>AC08</td>
<td>2.85V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K301B</td>
<td>AC10</td>
<td>3.0V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K331B</td>
<td>AC11</td>
<td>3.3V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K181B5</td>
<td>AC12</td>
<td>1.85V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K271B</td>
<td>AC13</td>
<td>2.7V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K121B5</td>
<td>AC14</td>
<td>1.25V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K311B</td>
<td>AC15</td>
<td>3.1V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K171B5</td>
<td>AC16</td>
<td>1.75V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K211B</td>
<td>AC17</td>
<td>2.1V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K141B</td>
<td>AC18</td>
<td>1.4V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K321B</td>
<td>AC19</td>
<td>3.2V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K171B</td>
<td>AC20</td>
<td>1.7V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K201B</td>
<td>AC21</td>
<td>2.0V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K291B5</td>
<td>AC22</td>
<td>2.95V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K321B5</td>
<td>AC23</td>
<td>3.25V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K161B</td>
<td>AC24</td>
<td>1.6V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K191B</td>
<td>AC25</td>
<td>1.9V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K221B</td>
<td>AC26</td>
<td>2.2V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K231B</td>
<td>AC27</td>
<td>2.3V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K241B</td>
<td>AC28</td>
<td>2.4V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part Number</th>
<th>①</th>
<th>②</th>
<th>③</th>
<th>④</th>
<th>Vset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP102K121D</td>
<td>AD01</td>
<td>1.2V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K131D</td>
<td>AD02</td>
<td>1.3V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K151D</td>
<td>AD03</td>
<td>1.5V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K181D</td>
<td>AD04</td>
<td>1.8V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K251D</td>
<td>AD05</td>
<td>2.5V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K261D</td>
<td>AD06</td>
<td>2.6V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K281D</td>
<td>AD07</td>
<td>2.8V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K281D5</td>
<td>AD08</td>
<td>2.85V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K291D</td>
<td>AD09</td>
<td>2.9V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K301D</td>
<td>AD10</td>
<td>3.0V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K331D</td>
<td>AD11</td>
<td>3.3V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K181D5</td>
<td>AD12</td>
<td>1.85V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K271D</td>
<td>AD13</td>
<td>2.7V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K121D5</td>
<td>AD14</td>
<td>1.25V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K311D</td>
<td>AD15</td>
<td>3.1V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K171D5</td>
<td>AD16</td>
<td>1.75V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K211D</td>
<td>AD17</td>
<td>2.1V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K141D</td>
<td>AD18</td>
<td>1.4V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K321D</td>
<td>AD19</td>
<td>3.2V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K171D</td>
<td>AD20</td>
<td>1.7V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K201D</td>
<td>AD21</td>
<td>2.0V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K291D5</td>
<td>AD22</td>
<td>2.95V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K321D5</td>
<td>AD23</td>
<td>3.25V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K161D</td>
<td>AD24</td>
<td>1.6V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K191D</td>
<td>AD25</td>
<td>1.9V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K221D</td>
<td>AD26</td>
<td>2.2V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K231D</td>
<td>AD27</td>
<td>2.3V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP102K241D</td>
<td>AD28</td>
<td>2.4V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Power Dissipation (SOT-23-5)

This specification is at mounted on board. Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

(Power Dissipation (SOT-23-5) is substitution of SOT-23-6.)

Measurement Conditions

<table>
<thead>
<tr>
<th>Standard Test Land Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
</tr>
<tr>
<td>Board Material</td>
</tr>
<tr>
<td>Board Dimensions</td>
</tr>
<tr>
<td>Copper Ratio</td>
</tr>
<tr>
<td>Through-holes</td>
</tr>
</tbody>
</table>

Measurement Result (T_a=25°C)

<table>
<thead>
<tr>
<th>Standard Test Land Pattern</th>
<th>Free Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Dissipation</td>
<td>420mW(T_jmax=125°C)</td>
</tr>
<tr>
<td></td>
<td>525mW(T_jmax=150°C)</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>θja = (125-25°C)/0.42W = 263°C/W</td>
</tr>
</tbody>
</table>

The above graph shows the Power Dissipation of the package based on T_jmax=125°C and T_jmax=150°C. Operating the IC in the shaded area in the graph might have an influence it's lifetime. Operating time must be within the time limit described in the table below, in case of operating in the shaded area.

<table>
<thead>
<tr>
<th>Operating Time</th>
<th>Estimated years</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,300 hours</td>
<td>1.5 years</td>
</tr>
</tbody>
</table>
RP102x
NO.EA-141-160705

Package Dimensions (SOT-23-5)

Mark Specifications (SOT-23-5)

①②③: Product Code … Refer to “RP102N Series Mark Specification Table”.
④⑤: Lot Number … Alphanumeric Serial Number
RP102N Series Mark Specification Table

PKG: SOT-23-5

<table>
<thead>
<tr>
<th>RP102Nxx1B</th>
<th>Part Number</th>
<th>①②③</th>
<th>Vset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP102N121B</td>
<td>60A</td>
<td>①②③</td>
<td>1.2V</td>
</tr>
<tr>
<td>RP102N131B</td>
<td>60B</td>
<td></td>
<td>1.3V</td>
</tr>
<tr>
<td>RP102N151B</td>
<td>60C</td>
<td></td>
<td>1.5V</td>
</tr>
<tr>
<td>RP102N181B</td>
<td>60D</td>
<td></td>
<td>1.8V</td>
</tr>
<tr>
<td>RP102N251B</td>
<td>60E</td>
<td></td>
<td>2.5V</td>
</tr>
<tr>
<td>RP102N261B</td>
<td>60F</td>
<td></td>
<td>2.6V</td>
</tr>
<tr>
<td>RP102N281B</td>
<td>60G</td>
<td></td>
<td>2.8V</td>
</tr>
<tr>
<td>RP102N281B5</td>
<td>60H</td>
<td></td>
<td>2.85V</td>
</tr>
<tr>
<td>RP102N291B</td>
<td>60J</td>
<td></td>
<td>2.9V</td>
</tr>
<tr>
<td>RP102N301B</td>
<td>60K</td>
<td></td>
<td>3.0V</td>
</tr>
<tr>
<td>RP102N331B</td>
<td>60L</td>
<td></td>
<td>3.3V</td>
</tr>
<tr>
<td>RP102N181B5</td>
<td>60M</td>
<td></td>
<td>1.85V</td>
</tr>
<tr>
<td>RP102N271B</td>
<td>60N</td>
<td></td>
<td>2.7V</td>
</tr>
<tr>
<td>RP102N121B5</td>
<td>60P</td>
<td></td>
<td>1.25V</td>
</tr>
<tr>
<td>RP102N311B</td>
<td>60Q</td>
<td></td>
<td>3.1V</td>
</tr>
<tr>
<td>RP102N171B5</td>
<td>60R</td>
<td></td>
<td>1.75V</td>
</tr>
<tr>
<td>RP102N211B</td>
<td>60S</td>
<td></td>
<td>2.1V</td>
</tr>
<tr>
<td>RP102N141B</td>
<td>60T</td>
<td></td>
<td>1.4V</td>
</tr>
<tr>
<td>RP102N321B</td>
<td>60U</td>
<td></td>
<td>3.2V</td>
</tr>
<tr>
<td>RP102N171B</td>
<td>60V</td>
<td></td>
<td>1.7V</td>
</tr>
<tr>
<td>RP102N201B</td>
<td>60W</td>
<td></td>
<td>2.0V</td>
</tr>
<tr>
<td>RP102N291B5</td>
<td>60X</td>
<td></td>
<td>2.95V</td>
</tr>
<tr>
<td>RP102N321B5</td>
<td>60Y</td>
<td></td>
<td>3.25V</td>
</tr>
<tr>
<td>RP102N161B5</td>
<td>60Z</td>
<td></td>
<td>1.6V</td>
</tr>
<tr>
<td>RP102N191B5</td>
<td>62A</td>
<td></td>
<td>1.9V</td>
</tr>
<tr>
<td>RP102N221B5</td>
<td>62B</td>
<td></td>
<td>2.2V</td>
</tr>
<tr>
<td>RP102N231B5</td>
<td>62C</td>
<td></td>
<td>2.3V</td>
</tr>
<tr>
<td>RP102N241B5</td>
<td>62D</td>
<td></td>
<td>2.4V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RP102Nxx1D</th>
<th>Part Number</th>
<th>①②③</th>
<th>Vset</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP102N121D</td>
<td>61A</td>
<td>①②③</td>
<td>1.2V</td>
</tr>
<tr>
<td>RP102N131D</td>
<td>61B</td>
<td></td>
<td>1.3V</td>
</tr>
<tr>
<td>RP102N151D</td>
<td>61C</td>
<td></td>
<td>1.5V</td>
</tr>
<tr>
<td>RP102N181D</td>
<td>61D</td>
<td></td>
<td>1.8V</td>
</tr>
<tr>
<td>RP102N251D</td>
<td>61E</td>
<td></td>
<td>2.5V</td>
</tr>
<tr>
<td>RP102N261D</td>
<td>61F</td>
<td></td>
<td>2.6V</td>
</tr>
<tr>
<td>RP102N281D</td>
<td>61G</td>
<td></td>
<td>2.8V</td>
</tr>
<tr>
<td>RP102N281D5</td>
<td>61H</td>
<td></td>
<td>2.85V</td>
</tr>
<tr>
<td>RP102N291D</td>
<td>61J</td>
<td></td>
<td>2.9V</td>
</tr>
<tr>
<td>RP102N301D</td>
<td>61K</td>
<td></td>
<td>3.0V</td>
</tr>
<tr>
<td>RP102N331D</td>
<td>61L</td>
<td></td>
<td>3.3V</td>
</tr>
<tr>
<td>RP102N181D5</td>
<td>61M</td>
<td></td>
<td>1.85V</td>
</tr>
<tr>
<td>RP102N271D</td>
<td>61N</td>
<td></td>
<td>2.7V</td>
</tr>
<tr>
<td>RP102N121D5</td>
<td>61P</td>
<td></td>
<td>1.25V</td>
</tr>
<tr>
<td>RP102N311D</td>
<td>61Q</td>
<td></td>
<td>3.1V</td>
</tr>
<tr>
<td>RP102N171D5</td>
<td>61R</td>
<td></td>
<td>1.75V</td>
</tr>
<tr>
<td>RP102N211D</td>
<td>61S</td>
<td></td>
<td>2.1V</td>
</tr>
<tr>
<td>RP102N141D</td>
<td>61T</td>
<td></td>
<td>1.4V</td>
</tr>
<tr>
<td>RP102N321D</td>
<td>61U</td>
<td></td>
<td>3.2V</td>
</tr>
<tr>
<td>RP102N171D</td>
<td>61V</td>
<td></td>
<td>1.7V</td>
</tr>
<tr>
<td>RP102N201D</td>
<td>61W</td>
<td></td>
<td>2.0V</td>
</tr>
<tr>
<td>RP102N291D5</td>
<td>61X</td>
<td></td>
<td>2.95V</td>
</tr>
<tr>
<td>RP102N321D5</td>
<td>61Y</td>
<td></td>
<td>3.25V</td>
</tr>
<tr>
<td>RP102N161D</td>
<td>61Z</td>
<td></td>
<td>1.6V</td>
</tr>
<tr>
<td>RP102N191D</td>
<td>63A</td>
<td></td>
<td>1.9V</td>
</tr>
<tr>
<td>RP102N221D</td>
<td>63B</td>
<td></td>
<td>2.2V</td>
</tr>
<tr>
<td>RP102N231D</td>
<td>63C</td>
<td></td>
<td>2.3V</td>
</tr>
<tr>
<td>RP102N241D</td>
<td>63D</td>
<td></td>
<td>2.4V</td>
</tr>
</tbody>
</table>
1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.

2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.

3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.

4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh’s or any third party’s intellectual property rights or any other rights.

5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.

6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.

7. Anti-radiation design is not implemented in the products described in this document.

8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.

9. WCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.

10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.

11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.

Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

Ricoh is RoHS Compliant
Halogen Free

https://www.e-devices.ricoh.co.jp/en/