The R1540x is a voltage tracker featuring input voltage in the range of 3.5 V to 42 V. Highly accurate output voltage which attributes to CE/ADJ pin achieves successful sequence control of the integrated off-board sensor module. Strong enough not to require the circuit to avoid external electromagnetic interference (EMI) and this contributes space saving. This is a high-reliability semiconductor device for industrial applications (-Y) that has passed both the screening at high temperature and the reliability test with extended hours.

KEY BENEFITS
- Excellent noise immunity provides effective shielding against EMI.
- Lower stand-by current consumption leads to energy saving of the whole system to prolong battery life.
- Response to requirements for sequence control in the system with integrated sensors.

KEY SPECIFICATIONS
- Input Voltage Range (Maximum Rating): 3.5 V to 42.0 V (50.0 V)
- Supply Current: Typ. 60 μA
- Standby Current: Typ. 0.1 μA
- Tracking Voltage Range: 2.2 V to 14 V
- Tracking Voltage Accuracy: ± 15 mV
 \((-40°C ≤ Ta ≤ 125°C, V_{CE/ADJ} = 5 V)\)
- Output Current 70 mA
- Ripple Rejection: Typ. 80 dB (f = 100 Hz)
- Protections: Thermal Shutdown, Output Current Limiting and Short-circuit Current Limiting

PACKAGE
- SOT-23-5: 2.9 x 2.8 x 1.1 (mm)
- HSOP-8E: 5.2 x 6.2 x 1.45 (mm)

SELECTION GUIDE

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Package</th>
<th>Quantity per Reel</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1540N001B-TR-YE</td>
<td>SOT-23-5</td>
<td>3,000 pcs</td>
</tr>
<tr>
<td>R1540S001B-E2-YE</td>
<td>HSOP-8E</td>
<td>1,000 pcs</td>
</tr>
</tbody>
</table>

APPLICATIONS
- Off-board sensors and power supply systems for analog to digital converters (ADC)
SELECTION GUIDE

R1540x offers selectable packages corresponding to user’s purpose.

Selection Guide

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Package</th>
<th>Quantity per Reel</th>
<th>Pb Free</th>
<th>Halogen Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1540N001B-TR-YE</td>
<td>SOT-23-5</td>
<td>3,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R1540S001B-E2-YE</td>
<td>HSOP-8E</td>
<td>1,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM

![R1540x001B Block Diagram](image)
PIN DESCRIPTIONS

R1540N (SOT-23-5) Pin Configuration

R1540N Pin Descriptions

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CE/ADJ</td>
<td>Chip Enable and Adjustment Pin (Active - High)</td>
</tr>
<tr>
<td>2</td>
<td>GND(2)</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>3</td>
<td>VDD</td>
<td>Input Pin</td>
</tr>
<tr>
<td>4</td>
<td>VOUT</td>
<td>Output Pin</td>
</tr>
<tr>
<td>5</td>
<td>GND(2)</td>
<td>Ground Pin</td>
</tr>
</tbody>
</table>

*(1) The tab on the bottom of the package is substrate potential (GND). It is recommended that this tab to be connected to the ground plane on the board.

(2) The GND pins must be wired together on the board.

R1540S (HSOP-8E) Pin Configuration

R1540S Pin Descriptions

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDD</td>
<td>Input Pin</td>
</tr>
<tr>
<td>2</td>
<td>VDD</td>
<td>Input Pin</td>
</tr>
<tr>
<td>3</td>
<td>NC</td>
<td>No Contact</td>
</tr>
<tr>
<td>4</td>
<td>CE/ADJ</td>
<td>Chip Enable and Adjustment Pin (Active - High)</td>
</tr>
<tr>
<td>5</td>
<td>GND(2)</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>6</td>
<td>GND(2)</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>7</td>
<td>NC</td>
<td>No Contact</td>
</tr>
<tr>
<td>8</td>
<td>VOUT</td>
<td>Output Pin</td>
</tr>
</tbody>
</table>

![Image of R1540N and R1540S pin configurations](image-url)
INTERNAL EQUIVALENT CIRCUIT FOR EACH PIN

VOOUT Pin Internal Equivalent Circuit Diagrams CE/ADJ Pin Internal Equivalent Circuit Diagrams
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Input Voltage</td>
<td>−0.3 to 50 V</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Peak Voltage (1)</td>
<td>60 V</td>
<td>V</td>
</tr>
<tr>
<td>$V_{CE/ADJ}$</td>
<td>CE/ADJ Pin Input Voltage</td>
<td>−0.3 to 50 V</td>
<td>V</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>VOUT Pin Output Voltage</td>
<td>−0.3 to $V_{IN} + 0.3 \leq 50$</td>
<td>V</td>
</tr>
<tr>
<td>I_{OUT}</td>
<td>Output Current</td>
<td>95 mA</td>
<td>mA</td>
</tr>
<tr>
<td>P_{D}</td>
<td>Power Dissipation (2)</td>
<td>JEDEC STD. 51 SOT-23-5</td>
<td>830 mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JEDEC STD. 51 HSOP-8E</td>
<td>3600 mW</td>
</tr>
<tr>
<td>T_j</td>
<td>Junction Temperature Range</td>
<td>−40 to 150 °C</td>
<td>°C</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>Storage Temperature Range</td>
<td>−55 to 150 °C</td>
<td>°C</td>
</tr>
</tbody>
</table>

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured.

RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Input Voltage</td>
<td>3.5 to 42 V</td>
<td>V</td>
</tr>
<tr>
<td>$V_{CE/ADJ}$</td>
<td>CE/ADJ Input Pin Voltage</td>
<td>0 to 14 V</td>
<td>V</td>
</tr>
<tr>
<td>T_a</td>
<td>Operating Temperature Range</td>
<td>−40 to 125 °C</td>
<td>°C</td>
</tr>
</tbody>
</table>

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such ratings by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

(1) Duration time: 200 ms.
(2) Refer to POWER DISSIPATION for detailed information
ELECTRICAL CHARACTERISTICS

C\text{IN} = 0.1 \, \mu F, \, C\text{OUT} = 10 \, \mu F, \, V\text{CE/ADJ} = 5.0 \, V \, \text{and} \, V\text{IN} = 14.0 \, V, \, \text{unless otherwise noted.}

The specifications surrounded by \underline{\text{______}} \, \text{are guaranteed by design engineering at} \, -40^\circ C \leq T_a \leq 125^\circ C.\]

R1540x001B Electrical Characteristics \((T_a = 25^\circ C)\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{ISS}</td>
<td>Supply Current</td>
<td>(V\text{IN} = 14 , V, , I\text{OUT} = 0 , mA)</td>
<td>\text{Min.}</td>
<td>\text{Typ.}</td>
<td>\text{Max.}</td>
<td>\text{Unit}</td>
</tr>
<tr>
<td>\text{I\text{standby}}</td>
<td>Standby Current</td>
<td>(V\text{IN} = 42 , V, , V\text{CE/ADJ} = 0 , V)</td>
<td>\text{0.1}</td>
<td>\text{1.0}</td>
<td>\</td>
<td>\mu A</td>
</tr>
<tr>
<td>\text{\Delta V\text{O}}</td>
<td>Tracking Voltage Accuracy</td>
<td>(8 , V \leq V\text{IN} \leq 24 , V, , 1 , mA \leq I\text{OUT} \leq 70 , mA)</td>
<td>\text{V\text{CE/ADJ} = 5.0 , V}</td>
<td>\text{15}</td>
<td>\text{15}</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6 , V \leq V\text{IN} \leq 42 , V, , 1 , mA \leq I\text{OUT} \leq 10 , mA)</td>
<td>\text{V\text{IN} = 15 , V}</td>
<td>\text{2.2 , V \leq V\text{CE/ADJ} \leq 5.0 , V}</td>
<td>\text{15}</td>
<td>\text{15}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>\text{I\text{OUT} = 1 , mA}</td>
<td>\text{5.0 , V < V\text{CE/ADJ} \leq 14.0 , V}</td>
<td>\text{18}</td>
<td>\text{18}</td>
</tr>
<tr>
<td>\text{\Delta V\text{OUT}}</td>
<td>\text{Load Regulation}</td>
<td>(V\text{IN} = 8 , V, , 1 , mA \leq I\text{OUT} \leq 70 , mA)</td>
<td>\text{V\text{CE/ADJ} = 5.0 , V}</td>
<td>\text{2}</td>
<td>\text{2}</td>
<td>mV</td>
</tr>
<tr>
<td>\text{\Delta V\text{OUT}}</td>
<td>\text{Line Regulation}</td>
<td>(6 , V \leq V\text{IN} \leq 42 , V, , I\text{OUT} = 1 , mA)</td>
<td>\text{V\text{CE/ADJ} = 5.0 , V}</td>
<td>\text{8}</td>
<td>\text{8}</td>
<td>mV</td>
</tr>
<tr>
<td>\text{\Delta V\text{OUT}}</td>
<td>\text{CE/ADJ Regulation}</td>
<td>(2.2 , V \leq V\text{CE/ADJ} \leq 14 , V, , I\text{OUT} = 1 , mA, , V\text{IN} = 15 , V)</td>
<td>\text{V\text{CE/ADJ} = 5.0 , V}</td>
<td>\text{1}</td>
<td>\text{1}</td>
<td>mV/V</td>
</tr>
<tr>
<td>\text{\Delta V\text{OUT}}</td>
<td>\text{CE/ADJ Pin Pull Down Current}</td>
<td>(V\text{IN} = 42 , V, , V\text{CE/ADJ} = 2 , V)</td>
<td>\text{V\text{CE/ADJ} = 5.0 , V}</td>
<td>\text{0.2}</td>
<td>\text{1.0}</td>
<td>mA</td>
</tr>
<tr>
<td>\text{T\text{TSD}}</td>
<td>Thermal Shutdown Detection Temperature</td>
<td>Junction Temperature</td>
<td>150</td>
<td>165</td>
<td>\text{°C}</td>
<td></td>
</tr>
<tr>
<td>\text{T\text{TSR}}</td>
<td>Thermal Shutdown Released Temperature</td>
<td>Junction Temperature</td>
<td>128</td>
<td>135</td>
<td>\text{°C}</td>
<td></td>
</tr>
</tbody>
</table>

All test items listed under Electrical Characteristics are done under the pulse load condition \((T_j = T_a = 25^\circ C)\).
TYPICAL APPLICATION

![Typical Application Diagram]

R1540x Typical Application

TECHNICAL NOTES

Phase Compensation
R1540x adopts capacitance and Equivalent Series Resistance (ESR) for phase compensation to ensure stable operation even with load varying current. For this end, the capacitor of 10 μF or more is essential. A certain amount of ESR may cause unstable output voltage. Fully take temperature and frequency characteristics into consideration when evaluating the circuit. Place the capacitor of 0.1 μF or more between VDD and GND with using short leads and short printed circuit traces.

PCB Layout
SOT-23-5 package: connect Nos. 2 and 5 of GND pin together.
HSOP-8E package: connect Nos. 5 and 6 of GND pin together.
ESR vs. output current characteristics
Using ceramic output capacitor is highly recommended although availability of another low-ESR capacitors.
The mutual relations between the output current (I_{OUT}) causes noise under the specified value and the ESR are indicated below for reference.

Measurement Conditions
Frequency Band: 10 Hz to 2 MHz
Temperature: −40°C to 125°C
Shaded portion: Noise level is 40 μV (average) or below
Capacitors: C_{IN} = 0.1 μF of Ceramic, C_{OUT} = 10 μF of Ceramic
THEORY OF OPERATION

Thermal Shutdown
Thermal Shutdown occurs when the device’s junction temperature reaches 165°C (Typ.) at which point the regulator will automatically shut down. Then the regulator resumes from the stand-by state when the junction temperature decreases below 135°C (Typ.). Unless the cause of overheating is eliminated, the device cycles on and off to generate pulse output.
APPLICATION INFORMATION

Typical Application for IC Chip Breakdown Prevention

A sudden surge of current flowing through the VOUT pin during a short to GND leads to negative voltage due to resonance generated between the impedance of the wire and the output capacitor, C2. Consequently, large short-circuit current may destroy the IC or a load device in some types of pattern boards. It is highly recommended to connect schottky diode, D1, between VOUT pin and GND to prevent the IC from being destroyed.

\[C_{IN} = \text{Ceramic 0.1 }\mu\text{F} \]
\[C_{OUT} = \text{Ceramic 10 }\mu\text{F} \]
Electromagnetic Noise Immunity

An output voltage may linearly varies in some regulators due to electromagnetic noise. R1540x adopts the techniques on its circuits to prevent this voltage variation. The noise immunity test indicated below was conducted to confirm that R1540x is fairly robust to electromagnetic noise over a broad frequency band.

DC power supply : apply $V_{\text{IN}} = 14$ V, $V_{\text{CE/ADJ}} = 5$ V
Digital multi meter : measure the output DC voltage of R1540
Signal generator : apply high frequency signal of 150 kHz to 1 GHz
Power meter : measure the intensity of signal so as to sense the surface electric field intensity of 800 V/m

Block Diagram for Immunity Test Based on IEC 62132-2 TEM cell

EMS Characteristics (TEM cell Applied : 800 V/m)

$V_{\text{IN}} = 14$ V, $V_{\text{CE/ADJ}} = 5$ V,
Surface Electric Field Intensity = 800 V/m
TYPICAL CHARACTERISTICS

Typical Characteristics are intended to be used as reference data, they are not guaranteed

1) Output voltage vs Output Current
\(C_{IN} = \text{Ceramic 0.1 } \mu\text{F, } C_{OUT} = \text{Ceramic 10 } \mu\text{F, } Ta = 25^\circ\text{C} \)

2) Output voltage vs Input Voltage
\(C_{IN} = \text{Ceramic 0.1 } \mu\text{F, } C_{OUT} = \text{Ceramic 10 } \mu\text{F, } Ta=25^\circ\text{C} \)
\(V_{IN} = 0 \text{ V, } V_{CE/ADJ} = 5 \text{ V, } V_{IN} = 0 \text{ V, } <= 42 \text{ V, } V_{CE/ADJ} = 5 \text{ V} \)

3) Supply Current vs Input Voltage
\(C_{IN} = \text{Ceramic 0.1 } \mu\text{F, } C_{OUT} = \text{Ceramic 10 } \mu\text{F, } Ta = 25^\circ\text{C} \)
\(V_{IN} = 0 \text{ V } <= 42 \text{ V, } V_{CE/ADJ} = 5 \text{ V, } I_{OUT} = 0 \text{ mA} \)
4) Supply Current vs Temperature
C\text{IN} = \text{Ceramic 0.1 µF}, C\text{OUT} = \text{Ceramic 10 µF}
V\text{IN} = 14 V, V_{\text{CE/ADJ}} = 5 V, I_{\text{OUT}} = 0 mA

5) Tracking Accuracy vs Temperature
C\text{IN} = \text{Ceramic 0.1 µF}, C\text{OUT} = \text{Ceramic 10 µF}
V\text{IN} = 14 V, V_{\text{CE/ADJ}} = 5 V, I_{\text{OUT}} = 1 mA

6) Tracking Accuracy vs Input Voltage
C\text{IN} = \text{Ceramic 0.1 µF}, C\text{OUT} = \text{Ceramic 10 µF},
T_a=25^\circ\text{C}
V_{\text{CE/ADJ}} = 2 V, V\text{IN} = 3 V \leftrightarrow 42 V
V_{\text{CE/ADJ}} = 5 V, V\text{IN} = 6 V \leftrightarrow 42 V
7) Tracking Accuracy vs Load Current
\(C_{IN} = \text{Ceramic } 0.1 \, \mu\text{F}, \quad C_{OUT} = \text{Ceramic } 10 \, \mu\text{F}, \quad Ta = 25^\circ\text{C} \)

\(V_{CE/ADJ} = 2 \, \text{V}, \quad I_{OUT} = 1\,\text{mA} \leftrightarrow 70 \, \text{mA} \)

\(V_{CE/ADJ} = 5 \, \text{V}, \quad I_{OUT} = 1\,\text{mA} \leftrightarrow 70 \, \text{mA} \)

8) Tracking Accuracy vs CE/ADJ Voltage
\(C_{IN} = \text{Ceramic } 0.1 \, \mu\text{F}, \quad C_{OUT} = \text{Ceramic } 10 \, \mu\text{F}, \quad Ta = 25^\circ\text{C} \)

\(V_{IN} = 15 \, \text{V}, \quad V_{CE/ADJ} = 2.4 \, \text{V} \leftrightarrow 14 \, \text{V}, \quad I_{OUT} = 1 \, \text{mA} \)

9) Dropout Voltage vs Output Current
\(C_{IN} = \text{Ceramic } 0.1 \, \mu\text{F}, \quad C_{OUT} = \text{Ceramic } 10 \, \mu\text{F}, \quad Ta=25^\circ\text{C} \)

\(V_{IN} = 0 \, \text{V} \leftrightarrow 22 \, \text{V}, \quad V_{CE/ADJ} = 5 \, \text{V} \)
10) Dropout Voltage vs CE/ADJ Voltage
\(C_{IN} = \) Ceramic 0.1 µF, \(C_{OUT} = \) Ceramic 10 µF, \(T_a=25^\circ\text{C} \)
\(V_N = 0 \) V <=> 22 V, \(I_{OUT} = 70 \) mA

11) Equivalent Series Resistance vs Output Current
\(C_{IN} = \) Ceramic 0.1 µF, \(C_{OUT} = \) Ceramic 10 µF, \(T_a=25^\circ\text{C} \)
\(V_N = 4 \) V <=> 42 V, \(V_{CE/ADJ} = 2 \) V
\(T_a = -40^\circ\text{C} / 25^\circ\text{C} / 130^\circ\text{C} \)

12) Ripple Rejection vs Input Voltage
\(C_{IN} = \) none, \(C_{OUT} = \) Ceramic 10 µF, \(T_a = 25^\circ\text{C} \)
\(V_N = 5 \) V <=> 15 V, \(V_{CE/ADJ} = 5 \) V

\(V_N = 7 \) V <=> 42 V, \(V_{CE/ADJ} = 5 \) V
\(T_a = -40^\circ\text{C} / 25^\circ\text{C} / 130^\circ\text{C} \)
13) Ripple Rejection vs Frequency
\(C_{IN} = \text{none}, \ C_{OUT} = \text{Ceramic} \ 10 \ \mu F, \ Ta = 25^\circ C \)
\(V_{IN} = 14 \ \text{V}, \ V_{CE/ADJ} = 2 \ \text{V} \)

14) Load Transient Response
\(C_{IN} = \text{Ceramic} \ 0.1 \ \mu F, \ C_{OUT} = \text{Ceramic} \ 10 \ \mu F, \ Ta = 25^\circ C \)
\(V_{IN}=14 \ \text{V}, \ I_{OUT} = 1 \ \text{mA} \leftrightarrow 50 \ \text{mA}, \ t_{R} = t_{F} = 1 \ \text{us} \)

15) Input Transient Response
\(C_{IN} = \text{none}, \ C_{OUT} = \text{Ceramic} \ 10 \ \mu F, \ Ta = 25^\circ C \)
16) Turn-on Speed with CE/ADJ pin

\(C_{IN} = \) Ceramic 0.1 \(\mu \)F, \(C_{OUT} = \) Ceramic 10 \(\mu \)F, \(Ta = 25^\circ \)C

\(V_{IN}=14 \) V, \(V_{CE/ADJ} = 0 \) V => 5 V

17) Turn-off Speed with CE/ADJ pin

\(C_{IN} = \) Ceramic 0.1 \(\mu \)F, \(C_{OUT} = \) Ceramic 10 \(\mu \)F, \(Ta = 25^\circ \)C

\(V_{IN}=14 \) V, \(V_{CE/ADJ} = 5 \) V => 0 V

18) CE/ADJ Excess/Inrush Current

\(C_{IN} = \) none, \(C_{OUT} = \) Ceramic 10 \(\mu \)F, \(Ta = 25^\circ \)C

\(V_{IN} = 8 \) V, \(V_{CE/ADJ} = 2.4 \) V => 5 V

\(V_{IN} = 8 \) V, \(V_{CE/ADJ} = 5 \) V => 2.4 V
19) Load Dump
$C_{IN} = $ Ceramic 0.1 µF, $C_{OUT} = $ Ceramic 10 µF, $T_a = 25^\circ C$
$V_{CE/ADJ} = 5 V$

20) Cranking
$C_{IN} = $ Ceramic 0.1 µF, $C_{OUT} = $ Ceramic 10 µF, $T_a = 25^\circ C$
$V_{CE/ADJ} = 5 V$, $I_{OUT} = 1 mA$
$V_{CE/ADJ} = 5 V$, $I_{OUT} = 50 mA$
Test Circuit

R1540x circuit for measuring Typical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Capacitance</th>
<th>Measurement item</th>
<th>Manufacturer</th>
<th>Parts number</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{IN}</td>
<td>0.1 μF</td>
<td>All</td>
<td>TDK</td>
<td>CGA4J2X7R2A104K125AA</td>
</tr>
<tr>
<td>C_{OUT}</td>
<td>10 μF</td>
<td>All</td>
<td>TDK</td>
<td>CGA6P1X7R1E106K</td>
</tr>
</tbody>
</table>

C_{IN} = Ceramic 0.1 μF
C_{OUT} = Ceramic 10 μF
$C_{CE/ADJ}$ = Ceramic 0.1 μF
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

<table>
<thead>
<tr>
<th>Item</th>
<th>Measurement Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>Mounting on Board (Wind Velocity = 0 m/s)</td>
</tr>
<tr>
<td>Board Material</td>
<td>Glass Cloth Epoxy Plastic (Four-Layer Board)</td>
</tr>
<tr>
<td>Board Dimensions</td>
<td>76.2 mm × 114.3 mm × 0.8 mm</td>
</tr>
<tr>
<td>Copper Ratio</td>
<td>Outer Layer (First Layer): Less than 95% of 50 mm Square</td>
</tr>
<tr>
<td></td>
<td>Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square</td>
</tr>
<tr>
<td></td>
<td>Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square</td>
</tr>
<tr>
<td>Through-holes</td>
<td>(\phi 0.3 \text{ mm} \times 7 \text{ pcs})</td>
</tr>
</tbody>
</table>

Measurement Result

\((T_a = 25^\circ \text{C}, T_{j\text{max}} = 150^\circ \text{C}) \)

<table>
<thead>
<tr>
<th>Item</th>
<th>Measurement Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Dissipation</td>
<td>830 mW</td>
</tr>
<tr>
<td>Thermal Resistance ((\theta_ja))</td>
<td>(\theta_ja = 150^\circ \text{C/W})</td>
</tr>
<tr>
<td>Thermal Characterization Parameter ((\psi_{jt}))</td>
<td>(\psi_{jt} = 51^\circ \text{C/W})</td>
</tr>
</tbody>
</table>

\(\theta_ja \): Junction-to-Ambient Thermal Resistance
\(\psi_{jt} \): Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern
SOT-23-5 Package Dimensions

UNIT: mm
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

<table>
<thead>
<tr>
<th>Item</th>
<th>Measurement Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>Mounting on Board (Wind Velocity = 0 m/s)</td>
</tr>
<tr>
<td>Board Material</td>
<td>Glass Cloth Epoxy Plastic (Four-Layer Board)</td>
</tr>
<tr>
<td>Board Dimensions</td>
<td>76.2 mm × 114.3 mm × 0.8 mm</td>
</tr>
<tr>
<td>Copper Ratio</td>
<td>Outer Layer (First Layer): Less than 95% of 50 mm Square</td>
</tr>
<tr>
<td></td>
<td>Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square</td>
</tr>
<tr>
<td></td>
<td>Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square</td>
</tr>
<tr>
<td>Through-holes</td>
<td>φ 0.3 mm × 21 pcs</td>
</tr>
</tbody>
</table>

Measurement Result (Ta = 25°C, Tjmax = 150°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Measurement Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Dissipation</td>
<td>3600 mW</td>
</tr>
<tr>
<td>Thermal Resistance (θja)</td>
<td>θja = 34.5°C/W</td>
</tr>
<tr>
<td>Thermal Characterization Parameter (ψjt)</td>
<td>ψjt = 10°C/W</td>
</tr>
</tbody>
</table>

θja: Junction-to-Ambient Thermal Resistance

ψjt: Junction-to-Top Thermal Characterization Parameter

![Power Dissipation vs. Ambient Temperature](image1)

![Measurement Board Pattern](image2)
HSOP-8E Package Dimensions
Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

Ricoh is providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH ELECTRONIC DEVICES CO., LTD.

https://www.e-devices.ricoh.co.jp/en/

Sales & Support Offices
Ricoh Electronic Devices Co., Ltd.
Shin-Yokohama Office (International Sales)
2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan
Phone: +81-50-3814-7687 Fax: +81-45-474-0074
Ricoh Americas Holdings, Inc.
975 Campbell Technology Parkway, Suite 200 Campbell, CA 95008, U.S.A.
Phone: +1-408-610-3105
Ricoh Europe (Netherlands) B.V.
Semiconductor Support Centre
Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands
Phone: +31-20-6474-309
Ricoh International B.V. - German Branch
Semiconductor Sales and Support Centre
Oberrather Strasse 6, 40472 Düsseldorf, Germany
Phone: +49-211 6546-0
Ricoh Electronic Devices Korea Co., Ltd.
3F, Heeung Bldg, 504, Toheran-ro, Gangnam-gu, Seoul, 135-725, Korea
Phone: +82-2-2135-8700 Fax: +82-2-2051-9713
Ricoh Electronic Devices Shanghai Co., Ltd.
Room 403, No.2 Building, No.655 Bibo Road, Pu Dung New District, Shanghai 201203, People’s Republic of China
Phone: +86-21-5027-3200 Fax: +86-21-5027-3299
Ricoh Electronic Devices Shanghai Co., Ltd.
Shenzhen Branch
1605, Block G (RuiHong Building), Kingkey 100, Hongbao Road, Luohu District, Shenzhen, China
Phone: +86-755-8348-7600 Ext 225
Ricoh Electronic Devices Co., Ltd.
Taipei office
Room 109, 10F-1, No.51, Hangyang Rd, Taipei City, Taiwan
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623