OUTLINE

The R1513S is a CMOS-based voltage regulator (VR) featuring 300 mA output current and 36 V input voltage. Internally, the R1513S consists of a fold-back protection circuit, a short current protection circuit and a thermal shutdown circuit in addition to the basic regulator circuit.

The performance is specified for 25°C with ±0.8% output voltage accuracy and for the −40°C to 125°C temperature range with ±1.0% output voltage accuracy. The operating temperature range is −40°C to 125°C and the maximum input voltage is 36 V. All these features allow the R1513S to become an ideal power source of electric home appliances.

The R1513S is available in 1.2 V, 1.5 V, 1.8 V, 3.3 V, 3.4 V and 5.0 V fixed output voltage options. By using external divider resistors, the output voltage can be set over a 1.2 V to 18.0 V range.

The R1513S is offered in a 6-pin HSOP-6J high wattage package.

FEATURES

- Input Voltage (Maximum Ratings) 3.5 V to 36 V (50 V)
- Operating Temperature Range −40°C to 125°C
- Supply Current Typ. 75 μA
- Standby Current Typ. 0.1 μA
- Dropout Voltage Typ. 0.32 V (I_OUT = 300 mA, V_OUT = 5.0 V)
- Output Voltage Accuracy ±0.8% (Ta = 25°C)
- ±1.0% (−40°C to 125°C)
- Line Regulation Typ. 0.01%/V (V_DD = V_OUT + 1 V to 36 V)
- Package Type HSOP-6J
- Output Voltage 1.2 V / 1.5 V / 1.8 V / 3.3 V / 3.4 V / 5.0 V
- Short-current Protection Circuit Current Limit Typ. 50 mA
- Fold-back Protection Circuit Current Limit Typ. 450 mA
- Thermal Shutdown Circuit Shutdown at Typ. 160°C
- Ripple Rejection Typ. 70 dB (f = 100 Hz)
- Ceramic Capacitor Compatible C1 = 1.0 μF or more, C2 = 4.7 μF or more

APPLICATIONS

- Power source for home appliances such as refrigerators, rice cookers, and electric hot-water pot.
- Power source for notebook PCs, digital TVs, cordless phones, and private LAN system.
- Power source for office equipment machines such as copiers, printers, facsimiles, scanners, and projectors.
SELECTION GUIDE

The set output voltage and the auto-discharge option\(^1\) are user-selectable options.

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Package</th>
<th>Quantity per Reel</th>
<th>Pb Free</th>
<th>Halogen Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1513Sxx1*-E2-FE</td>
<td>HSOP-6J</td>
<td>1,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

xx: Specify the set output voltage \(V_{\text{SET}}\) from below.

1.2 V (12) / 1.5 V (15) / 1.8 V (18) / 3.3 V (33) / 3.4 V (34) / 5.0 V (50)

*: Specify the auto-discharge option.
B: Auto-discharge option not included
D: Auto-discharge option included

\(^1\) Auto-discharge function quickly lowers the output voltage to 0 V, when the chip enable signal is switched from the active mode to the standby mode, by releasing the electrical charge accumulated in the external capacitor.
PIN DESCRIPTION

HSOP-6J Pin Configuration

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V\text{OUT}</td>
<td>Output Pin</td>
</tr>
<tr>
<td>2</td>
<td>GND1</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>3</td>
<td>V\text{FB}</td>
<td>Feedback Pin</td>
</tr>
<tr>
<td>4</td>
<td>CE</td>
<td>Chip Enable Pin, Active-high</td>
</tr>
<tr>
<td>5</td>
<td>GND1</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>6</td>
<td>V\text{DD}</td>
<td>Input Pin</td>
</tr>
</tbody>
</table>

1 The GND pins must be wired together when they are mounted on board.
ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Input Voltage</td>
<td>−0.3 to 50</td>
<td>V</td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Peak Input Voltage1</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>V_{CE}</td>
<td>CE Pin Input Voltage</td>
<td>−0.3 to 50</td>
<td>V</td>
</tr>
<tr>
<td>V_{FB}</td>
<td>VFB Pin Input Voltage</td>
<td>−0.3 to $V_{OUT} + 0.3 \leq 50$</td>
<td>V</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>Output Voltage</td>
<td>−0.3 to $V_{IN} + 0.3 \leq 50$</td>
<td>V</td>
</tr>
<tr>
<td>P_D</td>
<td>Power Dissipation2</td>
<td>Ultra High Wattage Land Pattern</td>
<td>3400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard Land Pattern</td>
<td>2100</td>
</tr>
<tr>
<td>T_a</td>
<td>Operating Temperature Range</td>
<td>−40 to 125</td>
<td>°C</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>Storage Temperature Range</td>
<td>−55 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

1 Duration time = 200 ms

2 Refer to PACKAGE INFORMATION for detailed information.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.
ELECTRICAL CHARACTERISTICS

C1 = 1.0 μF, C2 = 4.7 μF, VOUT = VFB, VSET = Set Output Voltage, unless otherwise noted.

The specifications surrounded by [] are guaranteed by design engineering at −40°C ≤ Ta ≤ 125°C.

R1513SxxxB/D Electrical Characteristics

(Ta = 25°C)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I<sub>SS</sub></td>
<td>Supply Current</td>
<td>V<sub>IN</sub> = 14 V, I<sub>OUT</sub> = 0 mA</td>
<td>75</td>
<td>110</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>I<sub>standby</sub></td>
<td>Standby Current</td>
<td>V<sub>IN</sub> = 36 V, V<sub>CE</sub> = 0 V</td>
<td>0.1</td>
<td>2.0</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>V<sub>OUT</sub></td>
<td>Output Voltage</td>
<td>3.5 V ≤ V<sub>SET</sub> + 1 V ≤ V<sub>IN</sub> ≤ 36 V, I<sub>OUT</sub> = 1 mA</td>
<td>V<sub>SET</sub> ≤ 1.8 V
1.8 V < V<sub>SET</sub></td>
<td>−18</td>
<td>18</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.5 V ≤ V<sub>SET</sub> + 1 V ≤ V<sub>IN</sub> ≤ 14 V,
1 mA ≤ I<sub>OUT</sub> ≤ 50 mA</td>
<td>V<sub>SET</sub> ≤ 1.8 V
1.8 V < V<sub>SET</sub></td>
<td>−0.99</td>
<td>≤1.01</td>
</tr>
<tr>
<td>∆V<sub>OUT</sub>
 /∆V<sub>IN</sub></td>
<td>Line Regulation</td>
<td>3.5 V ≤ V<sub>SET</sub> + 1 V ≤ V<sub>IN</sub> ≤ 36 V
I<sub>OUT</sub> = 1 mA</td>
<td>−0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>%/V</td>
</tr>
<tr>
<td>∆V<sub>OUT</sub>
 /∆I<sub>OUT</sub></td>
<td>Load Regulation</td>
<td>3.5V ≤ V<sub>IN</sub> = V<sub>SET</sub> + 1 V, 1 mA ≤ I<sub>OUT</sub> ≤ 300 mA</td>
<td>V<sub>SET</sub> ≤ 1.8 V
V<sub>SET</sub> = 3.3 V
V<sub>SET</sub> = 5.0 V</td>
<td>−12</td>
<td>≤12</td>
<td>mV</td>
</tr>
<tr>
<td>V<sub>DIF</sub></td>
<td>Dropout Voltage</td>
<td>I<sub>OUT</sub> = 300 mA</td>
<td>V<sub>SET</sub> = 1.2 V
1.5V ≤ V<sub>SET</sub>
1.8V ≤ V<sub>SET</sub></td>
<td>0.39</td>
<td>0.74</td>
<td>V</td>
</tr>
<tr>
<td>5.0V ≤ V<sub>SET</sub></td>
<td></td>
<td></td>
<td></td>
<td>0.32</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>I<sub>LIM</sub></td>
<td>Output Current Limit</td>
<td>V<sub>IN</sub> = V<sub>SET</sub> + 1.5 V</td>
<td>300</td>
<td>450</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I<sub>SC</sub></td>
<td>Short Current Limit</td>
<td>V<sub>OUT</sub> = 0 V</td>
<td>40</td>
<td>50</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>R<sub>FB</sub></td>
<td>Feedback Resistance</td>
<td></td>
<td>1.0</td>
<td>2.4</td>
<td>MΩ</td>
<td></td>
</tr>
<tr>
<td>V<sub>CEH</sub></td>
<td>CE Input Voltage "H"</td>
<td></td>
<td>2.2</td>
<td>36</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V<sub>CEL</sub></td>
<td>CE Input Voltage "L"</td>
<td></td>
<td>0</td>
<td>1.0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I<sub>PD</sub></td>
<td>CE Pull-down Current</td>
<td>V<sub>CE</sub> = 5.0 V
V<sub>CE</sub> = 36 V</td>
<td>0.2</td>
<td>0.6</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>T<sub>TSD</sub></td>
<td>Thermal Shutdown Temperature</td>
<td>Junction Temperature</td>
<td>150</td>
<td>160</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T<sub>TSR</sub></td>
<td>Thermal Shutdown Released Temperature</td>
<td>Junction Temperature</td>
<td>125</td>
<td>135</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>R<sub>LOW</sub></td>
<td>Low Output Nch Tr. ON Resistance (R1513SxxxD)</td>
<td>V<sub>IN</sub> = 14.0 V, V<sub>CE</sub> = 0 V</td>
<td>1.5</td>
<td>3.2</td>
<td>6.7</td>
<td>kΩ</td>
</tr>
</tbody>
</table>

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj = Ta = 25°C).
The specifications surrounded by the square brackets are guaranteed by design engineering at $-40\degree C \leq Ta \leq 125\degree C$.

Product-specific Electrical Characteristics

$\text{(Ta = 25}\degree C)$

<table>
<thead>
<tr>
<th>Product Name</th>
<th>V_{OUT} [V]</th>
<th>$\Delta V_{OUT}/\Delta I_{OUT}$ [mV]</th>
<th>V_{DIFF} [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN.</td>
<td>TYP.</td>
<td>MAX.</td>
</tr>
<tr>
<td>R1513S121x</td>
<td>1.182</td>
<td>1.200</td>
<td>1.218</td>
</tr>
<tr>
<td>R1513S151x</td>
<td>1.482</td>
<td>1.500</td>
<td>1.518</td>
</tr>
<tr>
<td>R1513S181x</td>
<td>1.782</td>
<td>1.800</td>
<td>1.818</td>
</tr>
<tr>
<td>R1513S331x</td>
<td>3.267</td>
<td>3.300</td>
<td>3.333</td>
</tr>
<tr>
<td>R1513S341x</td>
<td>3.366</td>
<td>3.400</td>
<td>3.434</td>
</tr>
<tr>
<td>R1513S501x</td>
<td>4.950</td>
<td>5.000</td>
<td>5.050</td>
</tr>
</tbody>
</table>
TYPICAL APPLICATION

![R1513S Typical Application](image)

External Components List

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1.0 µF, Ceramic Capacitor</td>
</tr>
<tr>
<td>C2</td>
<td>4.7 µF, Ceramic Capacitor</td>
</tr>
</tbody>
</table>

TECHNICAL NOTES

Phase Compensation

Phase compensation is provided to secure stable operation even when the load current is varied. For this purpose, use a 4.7 µF or more output capacitor (C2) with good frequency characteristics and proper ESR (Equivalent Series Resistance). Connect a 1.0 µF or more input capacitor (C1) between the VDD pin and the GND pin as close as possible to the pins.

In case of using a tantalum type capacitor with a large ESR, the output might become unstable. Evaluate your circuit including consideration of frequency characteristics.

Depending on the capacitor size, manufacturer, and part number, the bias characteristics and the temperature characteristics vary.

PCB Layout

Ensure the VDD and GND lines are sufficiently robust. If their impedance is too high, noise pickup or unstable operation may result. No. 2 pin and No.5 pin must be wired together when mounting on board. Connect a capacitor with a suitable between the VDD and GND pins, and as close as possible to the pins. The load regulation can be improved by short-circuiting VOUT and VFB close to the load device.
Thermal Shutdown Function

Thermal shutdown function detects overheating of the regulator and stops the regulator operation to protect the device from damage. Thermal shutdown circuit stops the regulator operation if the junction temperature becomes higher than 160°C (Typ.) and restarts the regulator operation if the junction temperature drops below 135°C (Typ.). The regulator repeats turning on and off and creates pulse waveform until the cause of the overheating is removed.

Adjustable Output Voltage Setting

Output voltage can be adjusted by using the external divider resistors (R1, R2). By using the following equation, the output voltage (\(V_{\text{OUT}}\)) can be determined. The voltage which is fixed inside the IC is described as \(V_{\text{FB}}\).

\[
V_{\text{OUT}} = V_{\text{FB}} \times \left(\frac{R_1 + R_2}{R_2}\right)
\]

Recommended Output Voltage Range: \(1.2 \text{ V} \leq V_{\text{OUT}} \leq 18 \text{ V}\)

\(V_{\text{FB}} = V_{\text{SET}}\)

Output Voltage Adjustment Using External Divider Resistors (R1, R2)

The minimum resistance value for a resistor (\(R_{\text{IC}}\)) is 1 MΩ (\(T_a = 25^\circ\text{C}\), guaranteed by design). For better accuracy, setting \(R_1 \ll R_{\text{IC}}\) reduces errors. The resistance value for a resistor (\(R_2\)) should be set to 33 kΩ or lower. If the resistance values set for \(R_1\) and \(R_2\) are larger, the impedance of the \(V_{\text{FB}}\) pin becomes larger. \(R_{\text{IC}}\) could be affected by temperature; therefore, evaluate the circuit taking the actual conditions of use into account when deciding the resistance values for \(R_1\) and \(R_2\).
PIN EQUIVALENT CIRCUIT DIAGRAMS

V_{OUT} Pin Equivalent Circuit Diagrams

CE Pin Equivalent Circuit Diagrams

V_{FB} Pin Equivalent Circuit Diagrams
POWER DISSIPATION (HSOP-6J)

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

Measurement Conditions

<table>
<thead>
<tr>
<th></th>
<th>Ultra-high Wattage Land Pattern</th>
<th>Standard Land Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>Mounting on Board (Wind Velocity = 0 m/s)</td>
<td>Mounting on Board (Wind Velocity = 0 m/s)</td>
</tr>
<tr>
<td>Board Material</td>
<td>Glass Cloth Epoxy Plastic (Four-layer Board)</td>
<td>Glass Cloth Epoxy Plastic (Double-sided Board)</td>
</tr>
<tr>
<td>Board Dimensions</td>
<td>76.2 mm × 114.3 mm × 0.8 mm</td>
<td>50 mm × 50 mm × 1.6 mm</td>
</tr>
<tr>
<td>Copper Ratio</td>
<td>96%</td>
<td>50%</td>
</tr>
<tr>
<td>Through-holes</td>
<td>φ 0.3 mm × 28 pcs</td>
<td>φ 0.5 mm × 24 pcs</td>
</tr>
</tbody>
</table>

Measurement Result

<table>
<thead>
<tr>
<th></th>
<th>Ultra-high Wattage Land Pattern</th>
<th>Standard Land Pattern</th>
<th>Free Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Dissipation</td>
<td>3400 mW</td>
<td>2100 mW</td>
<td>675 mW</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>37°C/W</td>
<td>59°C/W</td>
<td>185°C/W</td>
</tr>
</tbody>
</table>

(Ta = 25°C, Tjmax = 150°C)
PACKAGE DIMENSIONS (HSOP-6J)

HSOP-6J Package Dimensions

MARK SPECIFICATION (HSOP-6J)

1 2 3 4 5 6

1 2 3 4 5 6

HSOP-6J Mark Specification

①②③④: Product Code … Refer to MARK SPECIFICATION TABLE (HSOP-6J).
⑤⑥: Lot Number … Alphanumeric Serial Number
MARK SPECIFICATION TABLE (HSOP-6J)

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1513S121B</td>
<td>Z 1 2 B</td>
</tr>
<tr>
<td>R1513S151B</td>
<td>Z 1 5 B</td>
</tr>
<tr>
<td>R1513S181B</td>
<td>Z 1 8 B</td>
</tr>
<tr>
<td>R1513S331B</td>
<td>Z 3 3 B</td>
</tr>
<tr>
<td>R1513S341B</td>
<td>Z 3 4 B</td>
</tr>
<tr>
<td>R1513S501B</td>
<td>Z 5 0 B</td>
</tr>
<tr>
<td>R1513S121D</td>
<td>Z 1 2 D</td>
</tr>
<tr>
<td>R1513S151D</td>
<td>Z 1 5 D</td>
</tr>
<tr>
<td>R1513S181D</td>
<td>Z 1 8 D</td>
</tr>
<tr>
<td>R1513S331D</td>
<td>Z 3 3 D</td>
</tr>
<tr>
<td>R1513S341D</td>
<td>Z 3 4 D</td>
</tr>
<tr>
<td>R1513S501D</td>
<td>Z 5 0 D</td>
</tr>
</tbody>
</table>
TYPICAL CHARACTERISTICS

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

1) Output Voltage vs. Output Current (Ta = 25°C)

R1513S121B/D

2) Output Voltage vs. Input Voltage (Ta = 25°C)

R1513S331B/D

R1513S501B/D
3) Supply Current vs. Input Voltage (Ta = 25°C)

4) GND Pin Current vs. Output Current (Ta = 25°C)
5) Output Voltage vs. Ambient Temperature

R1513S121B/D

Output Voltage V_{OUT} (V)

$V_{IN} = 14V$

V_{OUT} (V)

$I_{OUT}=1mA$

50mA

Ta (°C)

R1513S331B/D

Output Voltage V_{OUT} (V)

$V_{IN} = 14V$

$I_{OUT}=1mA$

50mA

Ta (°C)

R1513S501B/D

Output Voltage V_{OUT} (V)

$V_{IN} = 14V$

$I_{OUT}=1mA$

50mA

Ta (°C)

R1513S121B/D

(Output Voltage Adjusted to 17.2 V)

Output Voltage V_{OUT} (V)

$V_{IN} = 24V$

$R1=16kΩ$

$R2=1.2kΩ$

$I_{OUT}=1mA$

50mA

Ta (°C)

6) Dropout Voltage vs. Output Current

R1513S121B/D

Dropout Voltage V_{DIF} (V)

$I_{OUT}=1mA$

50mA

Ta=-40°C

25°C

125°C

R1513S331B/D

Dropout Voltage V_{DIF} (V)

$I_{OUT}=1mA$

50mA

Ta=-40°C

25°C

125°C
7) Dropout Voltage vs. Output Voltage (Ta = 25°C)

8) Ripple Rejection vs. Input Voltage (Ta = 25°C, Ripple = 0.5 Vpp)

R1513S501B/D

R1513S331B/D

R1513S121B/D

R1513S121B/D
9) Ripple Rejection vs. Frequency (Ta = 25°C, Ripple = 0.5 Vpp)

- **R1513S121B/D**
 - VIN = 3.5V
 - IOUT = 1mA, 50mA, 150mA

- **R1513S331B/D**
 - VIN = 4.3V
 - IOUT = 1mA, 50mA, 150mA

- **R1513S501B/D**
 - VIN = 6.0V
 - IOUT = 1mA, 50mA, 150mA
10) Input Transient Response (Ta = 25°C, C2 = 4.7 μF)

R1513S121B/D

R1513S331B/D

R1513S501B/D

11) Cranking (Ta = −18°C)

R1513S501B/D

12) Load Dumping (Ta = 25°C, C2 = 4.7 μF)

R1513S121B/D
13) Load Transient Response (Ta = 25°C)

R1513S121B/D

- Input Voltage V_{IN}
- Output Current I_{OUT}
- Output Voltage V_{OUT}

R1513S331B/D

- Input Voltage V_{IN}
- Output Current I_{OUT}
- Output Voltage V_{OUT}

R1513S501B/D

- Input Voltage V_{IN}
- Output Current I_{OUT}
- Output Voltage V_{OUT}
14) CE Transient Response (Ta = 25°C)

R1513S121B/D (VIN = 3.5 V)

![Diagram](image1)

R1513S331B/D (VIN = 4.3 V)

![Diagram](image2)

R1513S501B/D (VIN = 6.0 V)

![Diagram](image3)
15) Power-on Transient Response (Ta = 25°C, V_{CE} = 5 V)

R1513S121B/D

![Graph showing power-on transient response for R1513S121B/D](image)

R1513S331B/D

![Graph showing power-on transient response for R1513S331B/D](image)

R1513S501B/D

![Graph showing power-on transient response for R1513S501B/D](image)

16) Thermal Shutdown

R1513S501B/D

![Graph showing thermal shutdown for R1513S501B/D](image)

17) CE Pin Current vs. CE Pin Voltage (Ta = 25°C)

R1513Sxx1B/D

![Graph showing CE pin current vs. CE pin voltage for R1513Sxx1B/D](image)
Equivalent Series Resistance (ESR) vs. Output Current

It is recommended that a ceramic type capacitor be used for this device. However, other types of capacitors having lower ESR can also be used. The relation between the output current (I_{OUT}) and the ESR of output capacitor is shown below.

![Circuit Diagram]

$C_1 = \text{Ceramic}1.0 \, \mu\text{F}, \, C_2 = \text{Ceramic}4.7 \, \mu\text{F}$

Measurement Conditions

- Frequency Band: 10 Hz to 2 MHz
- Ambient Temperature: $-40\degree\text{C}$ to $125\degree\text{C}$
- Hatched Area: Noise level below 40 μV (average)
- Capacitor: $C_1 = 1.0 \, \mu\text{F}$ Ceramic Capacitor, $C_2 = 4.7 \, \mu\text{F}$ Ceramic Capacitor (CGA4J3X7R1C475K125AB)

![Graphs]

$V_{IN} = 3.5\text{V to 36V}$

$V_{IN} = 5\text{V to 36V}$

$V_{IN} = 18\text{V to 36V}$

V_{OUT} to 18.2 V
1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh’s or any third party’s intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, space vehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH ELECTRONIC DEVICES CO., LTD.

Official website
https://www.e-devices.ricoh.co.jp/en/
Contact us
https://www.e-devices.ricoh.co.jp/en/support/