OUTLINE

The R1116x Series are CMOS-based voltage regulator ICs with high output voltage accuracy, low supply current, low on Resistance, and high ripple rejection. Each of these ICs consists of a voltage reference unit, an error amplifier, resistor-net for voltage setting, a short current limit circuit, a chip enable circuit, and so on.

These ICs perform with low dropout voltage and the chip-enable function. The supply current at no load of this IC is only 10μA, and the line transient response and the load transient response of the R1116x Series are excellent, thus these ICs are very suitable for the power supply for hand-held communication equipment.

The supply current at no load of R1116x Series is remarkably reduced compared with R1114x Series. The mode change signal to reduce the supply current is not necessary. The output voltage accuracy is also improved. (±1.5%)

The output voltage of these ICs is fixed with high accuracy. Since the packages for these ICs are SOT-23-5 and SON1612-6 therefore high density mounting of the ICs on boards is possible.

R1126N Series that a pin configuration differs from R1116N Series are available.

FEATURES

- Supply Current ... Typ. 10μA
- Standby Current .. Typ. 0.1μA
- Input Voltage Range .. 1.8V to 6.0V
- Output Voltage Range .. 1.5V to 4.0V (0.1V steps)
 (For other voltages, please refer to MARK INFORMATIONS.)
- Dropout Voltage ... Typ. 0.29V (IOUT=150mA, VOUT=2.8V)
- Ripple Rejection .. Typ. 70dB (f=1kHz, VOUT=3.0V)
 Typ. 53dB (f=10kHz)
- Output Voltage Accuracy .. ±1.5% (1.5V ≤ VOUT ≤ 3.0V), ±2.0% (VOUT>3.0V)
- Temperature-Drift Coefficient of Output Voltage Typ. ±100ppm/°C
- Line Regulation ... Typ. 0.02%/V
- Packages .. SOT-23-5, SON1612-6
- Built-in Fold Back Protection Circuit Typ. 40mA (Current at short mode)
- Ceramic capacitors are recommended to be used with this IC ... CIN=COUT=1.0μF (Ceramic)

APPLICATIONS

- Power source for portable communication equipment.
- Power source for portable music player.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.
SELECTION GUIDE

The output voltage, auto discharge function, package, and the taping type, etc. for the ICs can be selected at the user’s request.

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Package</th>
<th>Quantity per Reel</th>
<th>Pb Free</th>
<th>Halogen Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1116Dxx1*-TR-FE</td>
<td>SON1612-6</td>
<td>4,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R1116Nxx1*-TR-FE</td>
<td>SOT-23-5</td>
<td>3,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

xx: The output voltage can be designated in the range from 1.5V(15) to 4.0V(40) in 0.1V steps. (For other voltages, please refer to MARK INFORMATIONS.)

* CE pin polarity and auto discharge function at off state are options as follows.
 (B) "H" active, without auto discharge function at off state
 (D) "H" active, with auto discharge function at off state
PIN CONFIGURATIONS

• SOT-23-5

• SON1612-6

PIN DESCRIPTIONS

• SOT-23-5

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_{DD}</td>
<td>Input Pin</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>3</td>
<td>CE</td>
<td>Chip Enable Pin</td>
</tr>
<tr>
<td>4</td>
<td>NC</td>
<td>No Connection</td>
</tr>
<tr>
<td>5</td>
<td>V_{OUT}</td>
<td>Output pin</td>
</tr>
</tbody>
</table>

• SON1612-6

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CE</td>
<td>Chip Enable Pin</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>3</td>
<td>V_{DD}</td>
<td>Input Pin</td>
</tr>
<tr>
<td>4</td>
<td>V_{OUT}</td>
<td>Output Pin</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>6</td>
<td>NC</td>
<td>No Connection</td>
</tr>
</tbody>
</table>
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>Input Voltage</td>
<td>6.5</td>
<td>V</td>
</tr>
<tr>
<td>VCE</td>
<td>Input Voltage (CE Pin)</td>
<td>6.5</td>
<td>V</td>
</tr>
<tr>
<td>VOUT</td>
<td>Output Voltage</td>
<td>−0.3−VIN+0.3</td>
<td>V</td>
</tr>
<tr>
<td>IOUT</td>
<td>Output Current</td>
<td>160</td>
<td>mA</td>
</tr>
<tr>
<td>P_D</td>
<td>Power Dissipation (SOT-23-5)*</td>
<td>420</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td>Power Dissipation (SON1612-6)*</td>
<td>500</td>
<td>mW</td>
</tr>
<tr>
<td>Topt</td>
<td>Operating Temperature Range</td>
<td>−40~85</td>
<td>°C</td>
</tr>
<tr>
<td>Tstg</td>
<td>Storage Temperature Range</td>
<td>−55~125</td>
<td>°C</td>
</tr>
</tbody>
</table>

*) For Power Dissipation, please refer to PACKAGE INFORMATION.

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field.

The functional operation at or over these absolute maximum ratings is not assured.
ELECTRICAL CHARACTERISTICS

- **R1116xxx1B/D**

#### Symbol	Item	Conditions	Min.	Typ.	Max.	Unit
\(V_{\text{OUT}} \) | Output Voltage | \(V_{\text{IN}} = \text{Set } V_{\text{OUT}} + 1V \) \(1mA \leq I_{\text{OUT}} \leq 30mA \) \(V_{\text{OUT}} \leq 3.4V \) \(V_{\text{OUT}} > 3.4V \) | \(\times 0.985 \) | \(\times 1.015 \) | \(\times 0.980 \) | \(\times 1.020 \) | V
\(I_{\text{OUT}} \) | Output Current | \(V_{\text{IN}} - V_{\text{OUT}} = 1.0V \) | 150 | mA
\(\Delta V_{\text{OUT}} / \Delta I_{\text{OUT}} \) | Load Regulation | \(V_{\text{IN}} = \text{Set } V_{\text{OUT}} + 1V \) \(1mA \leq I_{\text{OUT}} \leq 150mA \) \(1.5V \leq V_{\text{OUT}} < 2.0V \) \(2.0V \leq V_{\text{OUT}} < 3.0V \) \(3.0V \leq V_{\text{OUT}} \) | 28 | 55 | mV
\(V_{\text{DIFF}} \) | Dropout Voltage | Refer to the ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE
\(I_{\text{SS}} \) | Supply Current | \(V_{\text{IN}} = \text{Set } V_{\text{OUT}} + 1V, I_{\text{OUT}} = 0mA \) | 10 | 18 | μA
\(I_{\text{standby}} \) | Supply Current (Standby) | \(V_{\text{IN}} = \text{Set } V_{\text{OUT}} + 1V, V_{\text{CE}} = V_{\text{DD}} \) | 0.1 | 1.0 | μA
\(\Delta V_{\text{OUT}} / \Delta V_{\text{IN}} \) | Line Regulation | \(I_{\text{OUT}} = 30mA \) \(\text{Set } V_{\text{OUT}} + 0.5V \leq V_{\text{IN}} \leq 6.0V \) | 0.02 | 0.10 | %/V
\(\text{RR} \) | Ripple Rejection | \(f = 1kHz \) \(f = 10kHz \) \(\text{Ripple } 0.2Vp-p \) \(V_{\text{IN}} = V_{\text{OUT}} = 1.0V, I_{\text{OUT}} = 30mA \) | 70 | 53 | dB
\(V_{\text{IN}} \) | Input Voltage | | 1.8 | 6.0 | V
\(\Delta V_{\text{OUT}} / \Delta V_{\text{Topt}} \) | Output Voltage Temperature Coefficient | \(I_{\text{OUT}} = 30mA \) \(-40^\circ C \leq V_{\text{Topt}} \leq 85^\circ C \) | ±100 | ppm /°C
\(I_{\text{SC}} \) | Short Current Limit | \(V_{\text{OUT}} = 0V \) | 40 | mA
\(I_{\text{PD}} \) | CE Pull-down Current | | 0.5 | μA
\(V_{\text{CEH}} \) | CE Input Voltage “H” | | 1.0 | 6.0 | V
\(V_{\text{CEL}} \) | CE Input Voltage “L” | | 0.0 | 0.3 | V
\(I_{\text{en}} \) | Output Noise | \(BW = 10Hz \text{ to } 100kHz \) | 30 | μVrms
\(R_{\text{LOW}} \) | On Resistance of Nch Tr. for auto-discharge (Only for D version) | \(V_{\text{CE}} = 0V \) | 70 | Ω

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.
ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE

<table>
<thead>
<tr>
<th>Output Voltage V_{OUT} (V)</th>
<th>Dropout Voltage V_{DIF} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{OUT} = 1.5V$</td>
<td>Condition</td>
</tr>
<tr>
<td>$1.5V < V_{OUT} \leq 1.6V$</td>
<td>$I_{OUT}=150mA$</td>
</tr>
<tr>
<td>$1.6V < V_{OUT} \leq 1.7V$</td>
<td></td>
</tr>
<tr>
<td>$1.7V < V_{OUT} \leq 2.0V$</td>
<td></td>
</tr>
<tr>
<td>$2.0V < V_{OUT} \leq 2.7V$</td>
<td></td>
</tr>
<tr>
<td>$2.7V < V_{OUT} \leq 4.0V$</td>
<td></td>
</tr>
</tbody>
</table>

TYPICAL APPLICATIONS

(External Components)
C2 Ceramic 1.0μF Ex. Murata GRM155B30J105KE18B
Kyocera CM05X5R105K06AB
C1 Ceramic 1.0μF
TEST CIRCUITS

Fig.1 Standard test Circuit

Fig.2 Supply Current Test Circuit

Fig.3 Ripple Rejection, Line Transient Response Test Circuit

C1=Ceramic 1.0μF
C2=Ceramic 1.0μF
TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current (Topt=25°C)

2) Output Voltage vs. Input Voltage (Topt=25°C)
3) Supply Current vs. Input Voltage (Topt=25°C)

Graphs:
- **R1116x401x**: Shows output voltage (V) on the Y-axis and input voltage (V) on the X-axis. Different lines represent different current levels (Iout=1mA, 30mA, 50mA, 150mA).
- **R1116x151x**: Graphs showing supply current (IIS) in μA against input voltage (V).
- **R1116x281x**: Similar to R1116x151x, but with a different current range.
- **R1116x401x**: Another graph showing supply current (IIS) in μA against input voltage (V), with a different voltage range.
4) Output Voltage vs. Temperature

<table>
<thead>
<tr>
<th>Temperature Topt(°C)</th>
<th>Output Voltage VOUT(V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50</td>
<td>1.46</td>
</tr>
<tr>
<td>0</td>
<td>1.47</td>
</tr>
<tr>
<td>25</td>
<td>1.49</td>
</tr>
<tr>
<td>50</td>
<td>1.51</td>
</tr>
<tr>
<td>75</td>
<td>1.53</td>
</tr>
<tr>
<td>100</td>
<td>1.55</td>
</tr>
</tbody>
</table>

5) Supply Current vs. Temperature

<table>
<thead>
<tr>
<th>Temperature Topt(°C)</th>
<th>Supply Current ISS(μA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
</tr>
<tr>
<td>50</td>
<td>12</td>
</tr>
<tr>
<td>75</td>
<td>14</td>
</tr>
<tr>
<td>100</td>
<td>16</td>
</tr>
</tbody>
</table>

6) Dropout Voltage vs. Temperature
7) Dropout Voltage vs. Set Output Voltage (Topt=25°C)
8) Ripple Rejection vs. Input Bias Voltage (Topt=25°C, C_{IN} = none, C_{OUT} = 1μF)

R1116x281x

- Ripple Vp-p=0.2V, I_{OUT}=1mA
- Ripple Vp-p=0.5V, I_{OUT}=1mA
- Ripple Vp-p=0.2V, I_{OUT}=30mA
- Ripple Vp-p=0.5V, I_{OUT}=30mA
- Ripple Vp-p=0.2V, I_{OUT}=50mA
- Ripple Vp-p=0.5V, I_{OUT}=50mA

Input Voltage VIN(V) vs. Ripple Rejection RR(dB) for different frequencies (1kHz, 10kHz, 100kHz).
9) Ripple Rejection vs. Frequency (C_{in}=none)

R1116x151x

\[V_{IN}=2.7\text{Vdc}+0.5\text{Vp-p}, C_{OUT}=1\mu\text{F} \]

R1116x151x

\[V_{IN}=2.7\text{Vdc}+0.5\text{Vp-p}, C_{OUT}=2.2\mu\text{F} \]

R1116x281x

\[V_{IN}=3.8\text{Vdc}+0.5\text{Vp-p}, C_{OUT}=1\mu\text{F} \]

R1116x281x

\[V_{IN}=3.8\text{Vdc}+0.5\text{Vp-p}, C_{OUT}=2.2\mu\text{F} \]

R1116x401x

\[V_{IN}=5\text{Vdc}+0.5\text{Vp-p}, C_{OUT}=1\mu\text{F} \]

R1116x401x

\[V_{IN}=5\text{Vdc}+0.5\text{Vp-p}, C_{OUT}=2.2\mu\text{F} \]
10) Input Transient Response (I_{out}=30mA, C_{in}=none, t_{r}=t_{f}=5\mu s, C_{out}=Ceramic 1\mu F)

\begin{align*}
\text{R1116x151x} & \\
\text{R1116x281x} & \\
\text{R1116x401x} & \\
\end{align*}

11) Load Transient Response (t_{r}=t_{f}=0.5\mu s, C_{in}=Ceramic 1\mu F)

\begin{align*}
\text{R1116x151x} & \\
\text{R1116x151x} & \\
\end{align*}
12) Turn-on/off speed with CE pin (D version) (C_{IN}=Ceramic 1.0\mu F, C_{OUT}=Ceramic 1.0\mu F)

R1116x151D

VIN=2.5V

Output Voltage V_{OUT}(V)

CE Input Voltage V_{CE}(V)

Output Voltage

I_{OUT}=0mA

I_{OUT}=30mA

I_{OUT}=150mA

Time t(\mu s)

-5 0 5 10 15 20 25 30 35 40 45

6 5 4 3 2 1 0

4 3 2 1 0

0 0 0

0 0 0

0 0 0

0 0 0
TECHNICAL NOTES

When using these ICs, consider the following points:

1. Mounting on PCB
 Make VDD and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor with a capacitance value as much as 1.0\(\mu\)F or more as C1 between VDD and GND pin, and as close as possible to the pins.
 Set external components, especially the output capacitor, as close as possible to the ICs, and make wiring as short as possible.

2. Phase Compensation
 In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor C2 with good frequency characteristics and ESR (Equivalent Series Resistance).
 (Note: If additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.)

 If you use a tantalum type capacitor and ESR value of the capacitor is large, output might be unstable. Evaluate your circuit with considering frequency characteristics.
 Depending on the capacitor size, manufacturer, and part number, the bias characteristics and temperature characteristics are different. Evaluate the circuit with actual using capacitors.
ESR vs. Output Current

When using these ICs, consider the following points:

The relations between I_{OUT} (Output Current) and ESR of an output capacitor are shown below. The conditions when the white noise level is under 40μV (Avg.) are marked as the hatched area in the graph.

Measurement conditions
- $V_{\text{IN}} = V_{\text{OUT}} + 1V$
- C_{OUT}: GRM155B30J105KE18B
- Frequency Band: 10Hz to 2MHz
- Temperature: −40°C to 25°C
1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh’s or any third party’s intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a Ricoh product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancey feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
9. WL CSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH ELECTRONIC DEVICES CO., LTD.

https://www.e-devices.ricoh.co.jp/en/

Sales & Support Offices

Ricoh Electronic Devices Co., Ltd.
Shin-Yokohama Office (International Sales)
2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan
Phone: +81-50-3814-7697 Fax: +81-46-474-0074

Ricoh Americas Holdings, Inc.
975 Campbell Technology Parkway, Suite 200 Campbell, CA 95008, U.S.A.
Phone: +1-408-610-3105

Ricoh Europe (Netherlands) B.V.
Semiconductor Support Centre
Prof. W.H. Kaasbommel 1, 1183 DJ Amstelveen, The Netherlands
Phone: +31-20-6474-329

Ricoh International B.V., German Branch
Semiconductor Sales and Support Centre
Oberfrather Strasse 6, 40472 Düsseldorf, Germany
Phone: +49-211-6546-0

Ricoh Electronic Devices Korea Co., Ltd.
3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea
Phone: +82-2-2135-8700 Fax: +82-2-205-19713

Ricoh Electronic Devices Shanghai Co., Ltd.
Room 403, Ncl 2 Building, No.695 Bibo Road, Pu Dong New District, Shanghai 201203, People’s Republic of China
Phone: +86-21-5027-3900 Fax: +86-21-5027-3999

Ricoh Electronic Devices Shanghai Co., Ltd.
Shenzhen Branch
1205, Block Q (He’Bei Building), Kingkey 100, Hongbao Road, Luohu District, Shenzhen, China
Phone: +86-755-8348-7600 Ext 225

Ricoh Electronic Devices Co., Ltd.
Taipei office
Room 109, 10F-1, No.S1, Hangyang Rd, Taipei City, Taiwan (R.O.C.)
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623