OUTLINE

The R5520H is CMOS-based high-side MOSFET switch IC for Universal Serial Bus (USB) applications. Low ON Resistance (Typ. 100mΩ) and low supply current (Typ. 20μA at active mode) are realized in this IC.

An over-current limit circuit, thermal shutdown circuit, and an under voltage lockout circuit are built-in as protection circuits. Further, a delay circuit for flag signal after detecting over-current, is embedded to prevent miss-operation of error flag because of inrush current. The R5520H is ideal for applications of protection for USB power supply.

FEATURES

- Built-in P-channel MOSFET Switch
- Supply Current ..Typ. 20μA (at Active Mode)
- Switch ON Resistance ...Typ. 100mΩ
- Output Current..Min. 500mA
- Flag Delay Time ..Typ. 10ms.
- Over- Current Limit / Short Circuit Protection
- Built-in Under Voltage Lockout (UVLO) Function
- Built-in Thermal Shutdown Protection
- Built-in Soft-start Function
- Package ...SOT-89-5

APPLICATIONS

- USB Peripherals
- Notebook PCs
The logic of the enable pin for the ICs can be selected at the user’s request.

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Package</th>
<th>Quantity per Reel</th>
<th>Pb Free</th>
<th>Halogen Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>R5520H001*-T1-FE</td>
<td>SOT-89-5</td>
<td>1,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* : Designation of the logic of the enable pin.
(A) "L" active
(B) "H" active
PIN DESCRIPTIONS

- SOT-89-5

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Symbol</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EN</td>
<td>Enable Pin</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>3</td>
<td>FLG</td>
<td>FLG pin (Open Drain Output)</td>
</tr>
<tr>
<td>4</td>
<td>IN</td>
<td>Power Supply Pin</td>
</tr>
<tr>
<td>5</td>
<td>OUT</td>
<td>Output Pin</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>Input Voltage</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>VEN</td>
<td>Enable Pin Input Voltage</td>
<td>−0.3 to VIN+0.3</td>
<td>V</td>
</tr>
<tr>
<td>VFLG</td>
<td>Flag Voltage</td>
<td>−0.3 to 6.0</td>
<td>V</td>
</tr>
<tr>
<td>IFLG</td>
<td>Flag Current</td>
<td>14</td>
<td>mA</td>
</tr>
<tr>
<td>VOUT</td>
<td>Output Voltage</td>
<td>−0.3 to VIN+0.3</td>
<td>V</td>
</tr>
<tr>
<td>IOUT</td>
<td>Output Current</td>
<td>Internal Limited</td>
<td></td>
</tr>
<tr>
<td>PD</td>
<td>Power Dissipation 1 (SOT-89-5)</td>
<td>900</td>
<td>mW</td>
</tr>
<tr>
<td>Ta</td>
<td>Operating Temperature Range</td>
<td>−40 to 85</td>
<td>°C</td>
</tr>
<tr>
<td>Tstg</td>
<td>Storage Temperature Range</td>
<td>−55 to 125</td>
<td>°C</td>
</tr>
</tbody>
</table>

**1 For Power Dissipation, please refer to PACKAGE INFORMATION.

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.
ELECTRICAL CHARACTERISTICS

- **R5520H001A/B**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Input Voltage</td>
<td></td>
<td>4.0</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{DD1}</td>
<td>Supply Current 1</td>
<td>Active 1, OUT=open</td>
<td>20</td>
<td>60</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{DD2}</td>
<td>Supply Current 2</td>
<td>OFF 2, OUT=open</td>
<td>0.5</td>
<td>5.0</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>R_{ON}</td>
<td>Switch On Resistance</td>
<td>$V_{IN}=5V$, $I_{OUT}=500mA$</td>
<td>100</td>
<td>140</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN}=4V$, $I_{OUT}=500mA$</td>
<td>110</td>
<td>150</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>t_{ON}</td>
<td>Output Turn-on Delay</td>
<td>$R_L=10\Omega$</td>
<td>2</td>
<td>12</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>t_{OFF}</td>
<td>Output Turn-off Delay</td>
<td>$R_L=10\Omega$</td>
<td>5</td>
<td>20</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>V_{UVLO}</td>
<td>UVLO Threshold</td>
<td>$V_{IN}=\text{increasing}$</td>
<td>2.1</td>
<td>2.4</td>
<td>2.7</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN}=\text{decreasing}$</td>
<td>2.2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{TH}</td>
<td>Current Limit Threshold</td>
<td>Ramped Load</td>
<td>1.2</td>
<td>2.0</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>I_{Lim}</td>
<td>Short Current Limit</td>
<td>$V_{OUT}=0V$</td>
<td>0.50</td>
<td>0.75</td>
<td>1.00</td>
<td>A</td>
</tr>
<tr>
<td>I_{OD}</td>
<td>Over Current Flag Delay</td>
<td>From Over Current to FLG="L"</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>ms</td>
</tr>
<tr>
<td>T_{TS}</td>
<td>Thermal Shutdown Temperature Threshold</td>
<td>$T_j=\text{increasing}$</td>
<td>135</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_j=\text{decreasing}$</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{EN}</td>
<td>Enable Pin Input Current</td>
<td></td>
<td>0.01</td>
<td>1.00</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>V_{EN1}</td>
<td>Enable Pin Input Voltage 1</td>
<td>$V_{EN}=\text{increasing}$</td>
<td>2.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{EN2}</td>
<td>Enable Pin Input Voltage 2</td>
<td>$V_{EN}=\text{decreasing}$</td>
<td></td>
<td>0.8</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{LO}</td>
<td>Output Leakage Current</td>
<td></td>
<td>1</td>
<td>10</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>V_{LF}</td>
<td>Flag "L" Output Voltage</td>
<td>$I_{SINK}=1mA$</td>
<td></td>
<td>0.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{OF}</td>
<td>Flag Off Current</td>
<td>$V_{FLAG}=5.5V$</td>
<td>0.05</td>
<td>2.00</td>
<td>μA</td>
<td></td>
</tr>
</tbody>
</table>

* 1 $EN=L$ (R5520H001A), $EN=H$ (R5520H001B)
* 2 $EN=H$ (R5520H001A), $EN=L$ (R5520H001B)

RECOMMENDED OPERATING CONDITIONS *(ELECTRICAL CHARACTERISTICS)*

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.
OPERATION

This explanation is based on the typical application.

- (1) There is a parasitic diode between source and drain of the switch transistor. (Refer to the block diagram.) Because of this, in both cases of enable and disable, if the voltage of OUT pin is higher than IN pin, current flows from OUT to IN.

- (2) In case that OUT pin and GND is short, if over-current would continue, the temperature of the IC would increase drastically. If the temperature of the IC is beyond 135°C, the switch transistor turns off and the FLG pin level becomes "L". Then, when the temperature of the IC decreases equal or lower than 125°C, the switch transistor turns on and FLG becomes "H". Unless the abnormal situation of OUT pin is removed, the switch transistor repeats on and off. Refer to the 21) over-current protection operation in the typical characteristics.

- (3) Over-current level is set internally in the IC. There are three types of response against over-current:
 ① Under the condition that OUT pin is short or large capacity is loaded, if the IC is enabled, the IC becomes constant current state. After the flag delay time passes, FLG becomes "L", that means over current state. Refer to the 20) current limit transient response of typical characteristics.
 ② While the switch transistor is on, if OUT pin is short or large capacity is loaded, until the current limit circuit responds, large transient current flows. After the transient current is beyond the over-current detector threshold and delay time of the flag passes, FLG becomes "L", that means over current state. Refer to the 22), 23) over-current limit transient response of typical characteristics.
 ③ In the case that load current gradually increases, the IC is not into the constant current state until the current is beyond over current limit. Once the level is beyond the over current detector threshold, load current is limited into over current limit level. Note that load current continuously flows until the load current is beyond the over-current detector threshold.

- (4) FLG pin is Nch Open drain output. If the over-current or over-temperature is detected, FLG becomes "L". If over-current is detected, FLG becomes "L" after the flag delay time passes. Therefore flag signal is not out with inrush current.

- (5) UVLO circuit prevents that the switch transistor turns on until the input voltage is beyond 2.4V. UVLO circuit can operate when the IC is enabled.
TEST CIRCUIT

Supply Current Test Circuit

Switch On Resistance Test Circuit

Output On Time Test Circuit

Over-current Limit Test Circuit

Over-current Threshold Test Circuit

Enable Input Voltage Test Circuit
Typical Application

- **Flag Output Delay Time Test Circuit**
- **UVLO Threshold Test Circuit**

Technical Notes
- Put a capacitance range from 0.1μF to 1μF bypass capacitor between IN pin and GND pin of the IC. Without a bypass capacitor, in case of output short, because of the high side inductance of IN pin, ringing may be generated and it might be a cause of an unstable operation.

- Recommended pull-up resistance value range of flag pin is from 10kΩ to 100kΩ.
TIMING CHART

- R5520H001A

- R5520H001B
PACKAGE INFORMATION

POWER DISSIPATION (SOT-89-5)

Power Dissipation (P_d) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

Measurement Conditions

<table>
<thead>
<tr>
<th>Environment</th>
<th>High Wattage Land Pattern</th>
<th>Standard Land Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board Material</td>
<td>Glass cloth epoxy plastic (Double sided)</td>
<td>Glass cloth epoxy plastic (Double sided)</td>
</tr>
<tr>
<td>Board Dimensions</td>
<td>30mm × 30mm × 1.6mm</td>
<td>50mm × 50mm × 1.6mm</td>
</tr>
<tr>
<td>Copper Ratio</td>
<td>Top side: Approx. 20% , Back side: Approx. 100%</td>
<td>Top side: Approx. 10% , Back side: Approx. 100%</td>
</tr>
<tr>
<td>Through-hole</td>
<td>φ0.85mm × 10pcs</td>
<td>-</td>
</tr>
</tbody>
</table>

Measurement Result

<table>
<thead>
<tr>
<th>Power Dissipation</th>
<th>High Wattage Land Pattern</th>
<th>Standard Land Pattern</th>
<th>Free Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance</td>
<td>77°C/W</td>
<td>111°C/W</td>
<td>200°C/W</td>
</tr>
</tbody>
</table>

![Graph showing power dissipation vs ambient temperature](image)

Measurement Board Pattern

- **High Wattage**
 - IC Mount Area (Unit: mm)
- **Standard**

![Board dimensions and IC mount area diagram](image)
PACKAGE DIMENSIONS (SOT-89-5)

MARK SPECIFICATION (SOT-89-5)

MARK SPECIFICATION TABLE (SOT-89-5)

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Product Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>R5520H001A</td>
<td>F 01A</td>
</tr>
<tr>
<td>R5520H001B</td>
<td>F 01B</td>
</tr>
</tbody>
</table>
TYPICAL CHARACTERISTICS

1) Supply Current vs. Temperature

![Graph showing supply current vs. temperature with curves at different input voltages.]

2) Supply Current vs. Input Voltage

![Graph showing supply current vs. input voltage at different temperatures.]

3) On Resistance vs. Temperature

![Graph showing on resistance vs. temperature with curves at different input voltages.]

4) On Resistance vs. Input Voltage

![Graph showing on resistance vs. input voltage at different temperatures.]

5) Output On Time vs. Temperature

![Graph showing output on time vs. temperature with curves at different input voltages.]

6) Output On Time vs. Input Voltage

![Graph showing output on time vs. input voltage at different temperatures.]

VIN = 4V, 5.5V

IOUT = 500mA
7) Over-current limit vs. Temperature

8) Over-current limit vs. Input Voltage

9) Over-current Detector Threshold vs. Temperature

10) Over-current Detector Threshold vs. Input Voltage

11) Enable Input Voltage vs. Temperature

12) Enable Input Voltage vs. Input Voltage
13) Flag Output Delay Time vs. Temperature

- Graph showing Flag Output Delay Time vs. Temperature for different temperatures and input voltages.

14) Flag Output Delay Time vs. Input Voltage

- Graph showing Flag Output Delay Time vs. Input Voltage for different temperatures.

15) UVLO Threshold vs. Temperature

- Graph showing UVLO Detector Threshold vs. Temperature for different temperatures and input voltages.

16) UVLO at V_{IN} increasing

- Graph showing UVLO at increasing V_{IN} for different temperature conditions.
17) Turn-on response

Vin=5V, CL=147μF, RL=35Ω

VEN (10V/div)
VFLG (5V/div)
VOUT (5V/div)
IOUT (200mA/div)

Time(1ms/div)

18) Turn off Response

Vin=5V, CL=147μF, RL=35Ω

VEN (10V/div)
VFLG (5V/div)
VOUT (5V/div)
IOUT (200mA/div)

Time(2ms/div)

19) Inrush current

Vin=5V, RL=35Ω

VEN (10V/div)
VFLG (5V/div)

CL=310μF
CL=210μF
CL=110μF
CL=10μF

IOUT (200mA/div)

Time(1ms/div)
20) Current Limit Transient Response
(Case: Enable to Short)

VIN=5V

Time(2ms/div)

VFLG (5V/div)

IOUT (500mA/div)

11.6ms(tFD)

21) Thermal Shutdown

VIN=5V, CL=47μF

Time(100ms/div)

VFLG (5V/div)

VOUT (5V/div)

IOUT (500mA/div)

22) Current Limit Transient Response
(Case: Output short during enable)

VIN=5V, CL=47μF

Time(2ms/div)

VFLG (5V/div)

VOUT (5V/div)

IOUT (5A/div)
23) Zoomed in 22)
1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.

2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.

3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.

4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under any of Ricoh’s or any third party’s intellectual property rights or any other rights.

5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.

6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundency feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.

7. Anti-radiation design is not implemented in the products described in this document.

8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.

9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.

10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.

11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

https://www.e-devices.ricoh.co.jp/en/