OUTLINE

The RP506L is a low supply current CMOS-based PWM/VFM step-down DC/DC converter with synchronous rectifier featuring 2 A\(^{(1)}\) output current. Internally, a single converter consists of an oscillator, a reference voltage unit, an error amplifier, a switching control circuit, a mode control circuit, a soft start circuit, a latch type protection circuit, an under-voltage lockout (UVLO) circuit, a thermal shutdown circuit, and switching transistors.

The RP506L is employing synchronous rectification for improving the efficiency of rectification by replacing diodes with built-in switching transistors. Using synchronous rectification not only increases circuit performance but also allows a design to reduce parts count.

Power controlling method can be selected from forced PWM control type or PWM/VFM auto switching control type by inputting a signal to the MODE pin. In low output current, forced PWM control switches at fixed frequency rate in order to reduce noise. Likewise, in low output current, PWM/VFM auto switching control automatically switches from PWM mode to VFM mode in order to achieve high efficiency.

Output voltage type can be selected from an internally fixed output voltage type (RP506Lxx1G/H/K/L) or an externally adjustable output voltage type (RP506L001N/M). The output voltage accuracy of the RP506Lxx1G/H/K/L is as high as ±1.5% or ±18 mV. The output voltage of the RP506L001N/M can be set by using the external resistors.

Oscillator frequency can be selected from 2.3 MHz (RP506Lxx1G/H/N) or 1.2 MHz (RP506Lxx1K/L/M). Soft-start time is Typ. 150 µs, and by connecting an external capacitor to the TSS pin, soft-start time is adjustable.

Power good (PG) function monitors the V\(_{\text{OUT}}\) pin voltage or the feedback pin voltage (V\(_{\text{FB}}\)), and switches the PG pin to low if any abnormal condition is detected.

Protection circuits included in the RP506L are over current protection circuit, latch type protection circuit and thermal shutdown circuit. Over current protection circuit supervises the inductor peak current in each switching cycle, and if the current exceeds the L\(_{\text{X}}\) current limit (I\(_{\text{LX,lim}}\)), it turns off Pch Tr. Latch type protection circuit latches the built-in driver to the OFF state and stops the operation of the step-down DC/DC converter if the over current status continues or V\(_{\text{OUT}}\) continues being the half of the setting voltage for equal or longer than protection delay time (t\(_{\text{prot}}\)). Thermal shutdown circuit detects overheating of the converter if the output pin is shorted to the ground pin (GND) etc. and stops the converter operation to protect it from damage if the junction temperature exceeds the specified temperature.

The RP506L is available in DFN3030-12 which achieves high-density mounting on boards.

This is a high-reliability semiconductor device for industrial application (-Y) that has passed both the screening at high temperature and the reliability test with extended hours.

\(^{(1)}\) This is an approximate value. The output current is dependent on conditions and external components.
FEATURES

- Input Voltage Range (Maximum Rating) ……… 2.5 V to 5.5 V (6.5 V)
- Operating Temperature Range …………………… −40°C to 105°C
- Supply Current…………………………………… Typ. 48 µA (VFM mode, Lx at no load)
- Standby Current………………………………… Typ. 0 µA
- Output Voltage Range(1)………………………

<table>
<thead>
<tr>
<th>Version</th>
<th>Forced PWM Control</th>
<th>PWM/VFM Auto Switching Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP506Lxx1G/H</td>
<td>1.1 V to 3.3 V</td>
<td>0.8 V to 3.3 V</td>
</tr>
<tr>
<td>RP506L001N</td>
<td>1.1 V to 4.0 V</td>
<td>0.8 V to 4.0 V</td>
</tr>
<tr>
<td>RP506Lxx1K/L</td>
<td></td>
<td>0.8 V to 3.3 V</td>
</tr>
<tr>
<td>RP506L001M</td>
<td></td>
<td>0.6 V to 4.0 V</td>
</tr>
</tbody>
</table>

- Output Voltage Accuracy……………………… ±1.5% ($V_{SET}^{(2)} \geq 1.2$ V),
 ±18 mV ($V_{SET} < 1.2$ V) (RP506Lxx1G/H/K/L)
- Feedback Voltage Accuracy…………………… ±9 mV ($V_{FB} = 0.6$ V) (RP506L001N/M)
- Output Voltage/Feedback Voltage Temperature Coefficient………………………… ±100 ppm/°C
- Oscillator Frequency…………………………… Typ. 2.3 MHz (RP506Lxx1G/H/N)
 Typ. 1.2 MHz (RP506Lxx1K/L/M)
- Oscillator Maximum Duty……………………… Min. 100%
- Built-in Driver ON Resistance………………… Typ. Pch. 0.130 Ω, Nch. 0.125 Ω ($V_{IN} = 3.6$ V)
- UVLO Detector Threshold……………………… Typ. 2.2 V
- Inductor Current Limit Circuit………………… Current limit Typ. 2.8 A
- Latch Type Protection Circuit………………… Typ. 1.5 ms
- Package……………………………………… DFN3030−12

APPLICATIONS

- Industrial equipments such as FAs and smart meters
- Equipments used under high-temperature conditions such as surveillance camera and vending machine
- Equipments accompanied by self-heating such as motor and lighting

(1) Refer to Selection Guide for detailed information.
Fixed output voltage type (RP506Lxx1G/H/K/L) can be selected from 0.8 V, 1.0 V, 1.1 V, 1.2 V, 1.3 V, 1.5 V, 1.8 V, 1.85 V, 3.0 V and 3.3 V. Adjustable output voltage type (RP506L001N/M) can be set up to 4.0 V.

(2) $V_{SET} = $ Set Output Voltage
SELECTION GUIDE

The set output voltage, the output voltage type, the auto-discharge function\(^{(1)}\), and the oscillator frequency for the ICs are user-selectable options.

Selection Guide

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Package</th>
<th>Quantity per Reel</th>
<th>Pb Free</th>
<th>Halogen Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP506Lxx1$-TR-Y</td>
<td>DFN3030–12</td>
<td>3,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

xx: Designation of the set output voltage (V\(_S\)ET\(^{(2)}\))

For Fixed Output Voltage Type\(^{(3)}\):
- 0.8 V, 1.0 V, 1.1 V, 1.2 V, 1.3 V, 1.5 V, 1.8 V, 1.85 V, 3.0 V, 3.3 V

For Adjustable Output Voltage Type: 00 only

$: Designation of Version

<table>
<thead>
<tr>
<th>Version</th>
<th>Output Voltage Type</th>
<th>Auto-discharge Function</th>
<th>Oscillator Frequency</th>
<th>V(_S)ET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forced PWM</td>
<td>PWM/VFM Auto Switching</td>
</tr>
<tr>
<td>RP506Lxx1G</td>
<td>Fixed</td>
<td>No</td>
<td>2.3 MHz</td>
<td>1.1 V to 3.3 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8 V to 3.3 V</td>
</tr>
<tr>
<td>RP506Lxx1H</td>
<td>Fixed</td>
<td>Yes</td>
<td>2.3 MHz</td>
<td>1.1 V to 4.0 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8 V to 4.0 V</td>
</tr>
<tr>
<td>RP506L001N</td>
<td>Adjustable</td>
<td>No</td>
<td>1.2 MHz</td>
<td>0.8 V to 3.3 V</td>
</tr>
<tr>
<td>RP506Lxx1K</td>
<td>Fixed</td>
<td>Yes</td>
<td>1.2 MHz</td>
<td>0.8 V to 3.3 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6 V to 4.0 V</td>
</tr>
<tr>
<td>RP506L001M</td>
<td>Adjustable</td>
<td>No</td>
<td>1.2 MHz</td>
<td>0.6 V to 4.0 V</td>
</tr>
</tbody>
</table>

\(^{(1)}\): Auto-discharge function quickly lowers the output voltage to 0 V, when the chip enable signal is switched from the active mode to the standby mode, by releasing the electrical charge accumulated in the external capacitor.

\(^{(2)}\): V\(_S\)ET can be set only within the specified range of voltage. Refer to Designation of Version for detailed information.

\(^{(3)}\): 0.05 V step is also available as a custom code.
RP506L-Y

No. EA-391-180322

BLOCK DIAGRAMS

RP506Lxx1G/K Block Diagram

RP506Lxx1H/L Block Diagram
RP506L001N/M Block Diagram
PIN DESCRIPTIONS

DFN3030-12 Pin Configurations

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PV_IN</td>
<td>PV_IN Input Voltage Pin(2)</td>
</tr>
<tr>
<td>2</td>
<td>PV_IN</td>
<td>PV_IN Input Voltage Pin(2)</td>
</tr>
<tr>
<td>3</td>
<td>AV_IN</td>
<td>AV_IN Input Voltage Pin(2)</td>
</tr>
<tr>
<td>4</td>
<td>PG</td>
<td>Power Good Pin</td>
</tr>
<tr>
<td>5</td>
<td>CE</td>
<td>Chip Enable Pin (Active “H”)</td>
</tr>
<tr>
<td>6</td>
<td>MODE</td>
<td>Mode Control Pin (“H”: forced PWM control, “L”: PWM/VFM auto switching control)</td>
</tr>
<tr>
<td>7</td>
<td>TSS</td>
<td>Soft-start Pin</td>
</tr>
<tr>
<td>8</td>
<td>V_OUT/ V_FB</td>
<td>Output/ Feedback Voltage Pin</td>
</tr>
<tr>
<td>9</td>
<td>AGND</td>
<td>Analog Ground Pin(3)</td>
</tr>
<tr>
<td>10</td>
<td>L_X</td>
<td>Switching Pin</td>
</tr>
<tr>
<td>11</td>
<td>NC</td>
<td>No Connection</td>
</tr>
<tr>
<td>12</td>
<td>PGND</td>
<td>Power Ground Pin(3)</td>
</tr>
</tbody>
</table>

(1) The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.

(2) No.1 pin, No.2 pin and No.3 pin must be wired to the VIN plane when mounting on boards.

(3) No.9 pin and No.12 pin must be wired to the GND plane when mounting on boards.
ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings (AGND = PGND = 0 V)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>A/PV_{IN} Pin Voltage</td>
<td>−0.3 to 6.5 V</td>
<td></td>
</tr>
<tr>
<td>VLX</td>
<td>L_{X} Pin Voltage</td>
<td>−0.3 to A/PV_{IN} + 0.3 V</td>
<td></td>
</tr>
<tr>
<td>VCE</td>
<td>CE Pin Voltage</td>
<td>−0.3 to 6.5 V</td>
<td></td>
</tr>
<tr>
<td>VOUT/\ VFB</td>
<td>VOUT/VFB Pin Voltage</td>
<td>−0.3 to 6.5 V</td>
<td></td>
</tr>
<tr>
<td>VMODE</td>
<td>MODE Pin Voltage</td>
<td>−0.3 to 6.5 V</td>
<td></td>
</tr>
<tr>
<td>VPG</td>
<td>PG Pin Voltage</td>
<td>−0.3 to 6.5 V</td>
<td></td>
</tr>
<tr>
<td>VTSS</td>
<td>TSS Pin Voltage</td>
<td>−0.3 to AV_{IN} + 0.3 V</td>
<td></td>
</tr>
<tr>
<td>I_{LX}</td>
<td>L_{X} Pin Output Current</td>
<td>2.8 A</td>
<td></td>
</tr>
<tr>
<td>PD</td>
<td>Power Dissipation(^{(1)})</td>
<td>DFN3030−12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JEDEC STD. 51-7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test Land Pattern</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3400 mW</td>
<td></td>
</tr>
<tr>
<td>Tj</td>
<td>Junction Temperature Range</td>
<td>−40 to 125 °C</td>
<td></td>
</tr>
<tr>
<td>Tstg</td>
<td>Storage Temperature Range</td>
<td>−55 to 125 °C</td>
<td></td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>Input Voltage</td>
<td>2.5 to 5.5 V</td>
<td></td>
</tr>
<tr>
<td>Ta</td>
<td>Operating Temperature Range</td>
<td>−40 to 105 °C</td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

\(^{(1)}\) Refer to POWER DISSIPATION for detailed information.
ELECTRICAL CHARACTERISTICS

The specifications surrounded by [] are guaranteed by design engineering at −40°C ≤ Ta ≤ 105°C.

RP506Lxx1 Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Istandby</td>
<td>Standby Current</td>
<td>A/PVIN = 5.5 V, VCE = 0 V</td>
<td>0</td>
<td>5</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>ICEH</td>
<td>CE “H” Input Current</td>
<td>A/PVIN = VCE = 5.5 V</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>µA</td>
</tr>
<tr>
<td>ICEL</td>
<td>CE “L” Input Current</td>
<td>A/PVIN = 5.5 V, VCE = 0 V</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>µA</td>
</tr>
<tr>
<td>IMODEH</td>
<td>MODE “H” Input Current</td>
<td>A/PVIN = VMODE = 5.5 V, VCE = 0 V</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>µA</td>
</tr>
<tr>
<td>IMODEL</td>
<td>MODE “L” Input Current</td>
<td>A/PVIN = 5.5 V, VCE = VMODE = 0 V</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>µA</td>
</tr>
<tr>
<td>ILXLEAKH</td>
<td>LX Leakage Current “H”</td>
<td>A/PVIN = VLX = 5.5 V, VCE = 0 V</td>
<td>-1</td>
<td>0</td>
<td>6</td>
<td>µA</td>
</tr>
<tr>
<td>ILXLEAKL</td>
<td>LX Leakage Current “L”</td>
<td>A/PVIN = 5.5 V, VCE = VLX = 0 V</td>
<td>-16</td>
<td>0</td>
<td>1</td>
<td>µA</td>
</tr>
<tr>
<td>VCEH</td>
<td>CE “H” Input Voltage</td>
<td>A/PVIN = VCE = 5.5 V</td>
<td>1.0</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VCEL</td>
<td>CE “L” Input Voltage</td>
<td>A/PVIN = 2.5 V</td>
<td></td>
<td>0.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VMODEH</td>
<td>MODE “H” Input Voltage</td>
<td>A/PVIN = 5.5 V</td>
<td>1.0</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VMODEL</td>
<td>MODE “L” Input Voltage</td>
<td>A/PVIN = 2.5 V</td>
<td></td>
<td>0.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>RONP</td>
<td>On Resistance of Pch Transistor</td>
<td>A/PVIN = 3.6 V, ILX = −100 mA</td>
<td></td>
<td>0.130</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>RONN</td>
<td>On Resistance of Nch Transistor</td>
<td>A/PVIN = 3.6 V, ILX = −100 mA</td>
<td></td>
<td>0.125</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Maxduty</td>
<td>Maximum Duty Cycle</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>tstart1</td>
<td>Soft-start Time 1</td>
<td>A/PVIN = VCE = 3.6 V or VSET + 1 V, TSS = OPEN</td>
<td>75</td>
<td>150</td>
<td>300</td>
<td>µs</td>
</tr>
<tr>
<td>tstart2</td>
<td>Soft-start Time 2</td>
<td>A/PVIN = VCE = 3.6 V or VSET + 1 V, CBB = 0.1 µF</td>
<td>15</td>
<td>30</td>
<td>45</td>
<td>ms</td>
</tr>
<tr>
<td>ILXLM</td>
<td>LX Current Limit</td>
<td>A/PVIN = VCE = 3.6 V or VSET + 1 V</td>
<td>2200</td>
<td>2800</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>tprot</td>
<td>Protection Delay Time</td>
<td>A/PVIN = VCE = 3.6 V or VSET + 1 V</td>
<td>1.5</td>
<td>1.5</td>
<td>5</td>
<td>ms</td>
</tr>
<tr>
<td>UVLO1</td>
<td>UVLO Detector Threshold</td>
<td>A/PVIN = VCE</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>V</td>
</tr>
<tr>
<td>UVLO2</td>
<td>UVLO Released Voltage</td>
<td>A/PVIN = VCE</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
<td>V</td>
</tr>
<tr>
<td>TTSRD</td>
<td>Thermal Shutdown Temperature</td>
<td>Junction Temperature</td>
<td>165</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>TTSRS</td>
<td>Thermal Shutdown Released</td>
<td>Junction Temperature</td>
<td>115</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>RPG</td>
<td>On Resistance of PG Pin When Low Output</td>
<td>A/PVIN = 3.6 V, VOUT = 0 V or VFB = 0 V</td>
<td>45</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
</tbody>
</table>

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj ≈ Ta = 25°C).
ELECTRICAL CHARACTERISTICS (continued)

The specifications surrounded by [] are guaranteed by design engineering at −40°C ≤ Ta ≤ 105°C.

RP506Lxx1G/H, RP506L001N (Oscillator Frequency: 2.3 MHz) Electrical Characteristics

\((Ta = 25°C) \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IN})</td>
<td>When MODE = H</td>
<td>Operating Input Voltage(^{(1)})</td>
<td>(1.1 \leq V_{SET} < 1.2)</td>
<td>2.5</td>
<td>4.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1.2 \leq V_{SET})</td>
<td>2.5</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>When MODE = L</td>
<td>Operating Input Voltage(^{(2)})</td>
<td>(0.8 \leq V_{SET} < 1.0)</td>
<td>2.5</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1.0 \leq V_{SET})</td>
<td>2.5</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>(f_{osc})</td>
<td>Oscillator Frequency</td>
<td></td>
<td>(A/PV_{IN} = V_{CE} = 3.6) V or (V_{SET} + 1) V</td>
<td>2.0</td>
<td>2.3</td>
<td>2.50</td>
</tr>
</tbody>
</table>

RP506Lxx1K/L, RP506L001M (Oscillator Frequency: 1.2 MHz) Electrical Characteristics

\((Ta = 25°C) \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IN})</td>
<td>When MODE = H</td>
<td>Operating Input Voltage</td>
<td>(0.6 \leq V_{SET} < 0.7)</td>
<td>2.5</td>
<td>4.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.7 \leq V_{SET})</td>
<td>2.5</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>When MODE = L</td>
<td>Operating Input Voltage</td>
<td>(0.6 \leq V_{SET})</td>
<td>2.5</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>(f_{osc})</td>
<td>Oscillator Frequency</td>
<td></td>
<td>(A/PV_{IN} = V_{CE} = 3.6) V or (V_{SET} + 1) V</td>
<td>1.00</td>
<td>1.20</td>
<td>1.40</td>
</tr>
</tbody>
</table>

All test items listed under Electrical Characteristics are done under the pulse load condition \((T_j \approx T_a = 25°C) \).

\(^{(1)}\) As for RP506Lxx1G/H/N (MODE = H), \(V_{SET} \) can be set from 1.1 V.

\(^{(2)}\) As for RP506Lxx1G/H/N (MODE = L), \(V_{SET} \) can be set from 0.8 V.
ELECTRICAL CHARACTERISTICS (continued)

The specifications surrounded by __ are guaranteed by design engineering at −40°C ≤ Ta ≤ 105°C.

RP506Lxx1G/H/K/L (Fixed Output Voltage Type) Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Conditions</th>
<th>Min. (Ta = −40°C)</th>
<th>Typ. (Ta = 25°C)</th>
<th>Max. (Ta = 105°C)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOUT</td>
<td>Output Voltage</td>
<td>A/PVIN = VCE = 3.6 V or VSET + 1 V</td>
<td>x0.985</td>
<td>x1.015</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VSET ≥ 1.2 V VSET < 1.2 V</td>
<td>0.975</td>
<td>1.025</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>IOD1</td>
<td>Supply Current 1</td>
<td>A/PVIN = VCE = 5.5 V, VOUT = VSET x 0.8</td>
<td>600 µA</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>IOD2</td>
<td>Supply Current 2</td>
<td>A/PVIN = VCE = VOUT = 5.5 V</td>
<td>48 μA</td>
<td>72 µA</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>IOUTL</td>
<td>VOUT “L” Current</td>
<td>A/PVIN = 5.5 V, VCE = VOUT = 0 V</td>
<td>1 µA</td>
<td>0 µA</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>VOVDO</td>
<td>OVD Voltage</td>
<td>A/PVIN = 3.6 V</td>
<td>VSET x 1.2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VUVD</td>
<td>UVD Voltage</td>
<td>A/PVIN = 3.6 V</td>
<td>VSET x 0.8</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RP506Lxx1G/K (Fixed Output Voltage Type without Auto-discharge Function)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Conditions</th>
<th>Min. (Ta = −40°C)</th>
<th>Typ. (Ta = 25°C)</th>
<th>Max. (Ta = 105°C)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVOUTL</td>
<td>VOUT “H” Current</td>
<td>A/PVIN = VOUT = 5.5 V, VCE = 0 V</td>
<td>1 µA</td>
<td>0 µA</td>
<td>µA</td>
<td></td>
</tr>
</tbody>
</table>

RP506Lxx1H/L (Fixed Output Voltage Type with Auto-discharge Function)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Conditions</th>
<th>Min. (Ta = −40°C)</th>
<th>Typ. (Ta = 25°C)</th>
<th>Max. (Ta = 105°C)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLOW</td>
<td>On Resistance of Low</td>
<td>A/PVIN = 3.6 V, VCE = 0 V</td>
<td>45 Ω</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RP506L001N/M (Adjustable Output Voltage Type) Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Conditions</th>
<th>Min. (Ta = −40°C)</th>
<th>Typ. (Ta = 25°C)</th>
<th>Max. (Ta = 105°C)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFB</td>
<td>Feedback Voltage</td>
<td>A/PVIN = VCE = 3.6 V</td>
<td>0.591</td>
<td>0.600</td>
<td>0.609</td>
<td>V</td>
</tr>
<tr>
<td>AVFB</td>
<td>Feedback Voltage</td>
<td>A/PVIN = VCE = 3.6 V</td>
<td>0.585</td>
<td>0.600</td>
<td>0.615</td>
<td>V</td>
</tr>
<tr>
<td>ΔVFB/ΔTa</td>
<td>Feedback Voltage</td>
<td>A/PVIN = VCE = 3.6 V, VFB = 0.48 V</td>
<td>±100 ppm /°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOD1</td>
<td>Supply Current 1</td>
<td>A/PVIN = VCE = 5.5 V, VFB = 0.48 V</td>
<td>600 μA</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>IOD2</td>
<td>Supply Current 2</td>
<td>A/PVIN = VCE = VFB = 5.5 V</td>
<td>48 μA</td>
<td>72 μA</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>IVFBL</td>
<td>VFB “L” Current</td>
<td>A/PVIN = VFB = 5.5 V, VCE = VFB = 0 V</td>
<td>1 µA</td>
<td>0 µA</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>IVFBL</td>
<td>VFB “L” Current</td>
<td>A/PVIN = VFB = 5.5 V, VCE = VFB = 0 V</td>
<td>1 µA</td>
<td>0 µA</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>VOVDO</td>
<td>OVD Voltage</td>
<td>A/PVIN = 3.6 V</td>
<td>0.72 V</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VUVD</td>
<td>UVD Voltage</td>
<td>A/PVIN = 3.6 V</td>
<td>0.48 V</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj = Ta = 25°C) except Feedback Voltage Temperature Coefficient.
ELECTRICAL CHARACTERISTICS (continued)

The specifications surrounded by [] are guaranteed by design engineering at −40°C ≤ Ta ≤ 105°C.

<table>
<thead>
<tr>
<th>Product Name</th>
<th>V_{OUT} [V] ($Ta = 25^\circ C$)</th>
<th>V_{OUT} [V] ($Ta = -40 \sim 105^\circ C$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP506L081x</td>
<td>0.782</td>
<td>0.800</td>
</tr>
<tr>
<td>RP506L101x</td>
<td>0.982</td>
<td>1.000</td>
</tr>
<tr>
<td>RP506L111x</td>
<td>1.082</td>
<td>1.100</td>
</tr>
<tr>
<td>RP506L121x</td>
<td>1.182</td>
<td>1.200</td>
</tr>
<tr>
<td>RP506L131x</td>
<td>1.281</td>
<td>1.300</td>
</tr>
<tr>
<td>RP506L151x</td>
<td>1.478</td>
<td>1.500</td>
</tr>
<tr>
<td>RP506L181x</td>
<td>1.773</td>
<td>1.800</td>
</tr>
<tr>
<td>RP506L181x5</td>
<td>1.823</td>
<td>1.850</td>
</tr>
<tr>
<td>RP506L301x</td>
<td>2.955</td>
<td>3.000</td>
</tr>
<tr>
<td>RP506L331x</td>
<td>3.251</td>
<td>3.300</td>
</tr>
</tbody>
</table>
THEORY OF OPERATION

Soft-start Time Adjustment Function
Soft-start time (t_{start}) of the RP506L is adjustable by connecting a soft-start time adjustment capacitor (C_{SS}) between the TSS pin and GND. t_{start} can be set from Typ. 0.15 ms. As the figure below shows, if 0.1 \mu F C_{SS} is connected, t_{start} will be 30 ms. The TSS pin must be open if the soft-start time function is not used. t_{start} is set to 0.15 ms (Typ.) when the TSS pin is open.

![Soft-start Time (t_{start}) vs. Soft-start Time Adjustment Capacitor (C_{SS})](image)

Power Good Function
The RP506L contains a power good function using Nch open drain. If any abnormal condition is detected, the power good function turns Nch transistor on and switches the PG pin to low. If the cause of the abnormal condition is removed, the power good function turns Nch transistor off and switches the PG pin back to high. After the recovery from abnormal condition, it takes typically 0.05 ms for the IC to turns Nch transistor off. The followings are the abnormal conditions that the power good function can detect.

- CE = "L" (Shut down)
- UVLO (Shut down)
- Thermal Shutdown
- Over Voltage Detection: Typ. V_{SET} \times 1.2 V (RP506Lxx1G/H/K/L) or 0.72 V (RP506L001N/M)
- Under Voltage Detection: Typ. V_{SET} \times 0.8 V (RP506Lxx1G/H/K/L) or 0.48 V (RP506L001N/M)
- Latch Type Protection

Notes: When using the power good function, the resistance of PG pin (R_{PG}) should be between 10 k\Omega to 100 k\Omega. The PG pin must be open or connected to GND if the power good function is not used.
Sequential Start-up Using Soft-start Time Adjustment and Power Good Functions

Sequential startup circuits can be built by using soft-start time adjustment and power good functions of the RP506L. The figure below is an example of sequential startup circuits using DC/DC1 and DC/DC2.

The DC/DC1 starts up first followed by the DC/DC2: the output of DC/DC1 reaches 1.44 V (VSET x 0.8), the PG pin of DC/DC1 sends a high signal to the CE pin of DC/DC2, and then the DC/DC2 starts soft-start.

DC/DC1 (RP506L001N/M): Vin = 5.0 V, Vout = 1.8 V, tstart = 30 ms, CSS = 0.1 µF

DC/DC2 (RP506L001N/M): Vin = 5.0 V, Vout = 1.2 V, tstart = 30 ms, CSS = 0.1 µF

Circuits Example using Sequential Startup
Operation of Step-down DC/DC Converter and Output Current

The step-down DC/DC converter charges energy in the inductor when Lx Tr. turns “ON”, and discharges the energy from the inductor when Lx Tr. turns “OFF” and controls with less energy loss, so that a lower output voltage (VOUT) than the input voltage (VIN) can be obtained. The operation of the step-down DC/DC converter is explained in the following figures.

Step1. Pch Tr. turns “ON” and IL (i1) flows, L is charged with energy. At this moment, i1 increases from the minimum inductor current (ILmin), which is 0 A, and reaches the maximum inductor current (ILmax) in proportion to the on-time period (ton) of Pch Tr.

Step2. When Pch Tr. turns “OFF”, L tries to maintain IL at ILmax, so L turns Nch Tr. “ON” and IL (i2) flows into L.

Step3. i2 decreases gradually and reaches ILmin after the open-time period (topen) of Nch Tr., and then Nch Tr. turns “OFF”. This is called discontinuous current mode.

As the output current (IOUT) increases, the off-time period (toff) of Pch Tr. runs out before IL reaches ILmin. The next cycle starts, and Pch Tr. turns “ON” and Nch Tr. turns “OFF”, which means IL starts increasing from ILmin. This is called continuous current mode.

In the case of PWM mode, VOUT is maintained by controlling ton. During PWM mode, the oscillator frequency (fosc) is being maintained constant.

When the step-down DC/DC operation is constant, ILmin and ILmax during ton of Pch Tr. would be same as during toff of Pch Tr. The current differential between ILmax and ILmin is described as ΔI.

$$\Delta I = IL_{max} - IL_{min} = \frac{V_{OUT} \times topen}{L} = \left(\frac{V_{IN} - V_{OUT}}{L}\right) \times ton \times fosc \times \frac{100}{100}$$

However,

$$T = \frac{1}{fosc} = ton + toff$$

$$\text{duty} \% = \frac{ton}{T} \times 100 = \frac{ton \times fosc \times 100}{100}$$

In Equation 1, “VOUT × topen / L” shows the amount of current change in “ON” state. Also, “(VIN – VOUT) × ton / L” shows the amount of current change at “OFF” state.
Discontinuous Mode and Continuous Mode

As illustrated in Figure A, when I_{OUT} is relatively small, $t_{open} < t_{off}$. In this case, the energy charged into L during t_{on} will be completely discharged during t_{off}, as a result, $I_{L_{min}} = 0$. This is called discontinuous mode. When I_{OUT} is gradually increased, eventually $t_{open} = t_{off}$ and when I_{OUT} is increased further, eventually $I_{L_{min}} > 0$, as illustrated in Figure B. This is called continuous mode.

In the continuous mode, the solution of Equation 1 is described as t_{onc}.

$$t_{onc} = T_a \times \frac{V_{OUT}}{V_{IN}}$$ \hspace{1cm} \text{Equation 2}$$

When $t_{on} < t_{onc}$, it is discontinuous mode, and when $t_{on} = t_{onc}$, it is continuous mode.
Forced PWM Mode
By setting the MODE pin to “H”, the IC switches the frequency at the fixed rate to reduce noise even when the output load is light. Therefore, when I_{OUT} is ΔIL/2 or less, ILmin becomes less than 0. That is, the accumulated electricity in CL is discharged through the IC side while IL is increasing from ILmin to 0 during ton, and also while IL is decreasing from 0 to ILmin during toff.

\[
\begin{align*}
\text{ILmax} & \\
\text{ILmin} & \\
\text{ton} & \\
\text{toff} & \\
\text{T} = 1/f_{osc} & \\
\end{align*}
\]

VFM Mode
By setting the MODE pin to “L”, in low output current, the IC automatically switches into VFM mode in order to achieve high efficiency. In VFM mode, ton is forced to end when the inductor current reaches the pre-set ILmax. In the VFM mode, ILmax is typically set to 400 mA for the RP506Lxx1G//N, and 550 mA for the RP506Lxx1K//L//M. When ton reaches 1.5 times of T = 1 / f_{osc}, ton will be forced to end even if the inductor current is not reached ILmax.

\[
\begin{align*}
\text{ILmax} & \\
\text{ILmin} & \\
\text{ton} & \\
\text{toff} & \\
\text{t} & \\
\end{align*}
\]
Output Current and Selection of External Components

The following equations explain the relationship between output current and peripheral components that are listed in Table 1. Recommended External Components in Typical Application.

Ripple Current P-P value is described as I_{RP}, ON resistance of Pch Tr. is described as R_{ONP}, ON resistance of Nch Tr. is described as R_{ONN}, and DC resistor of the inductor is described as R_L.

First, when Pch Tr. is “ON”, the following equation is satisfied.

$$V_{IN} = V_{OUT} + (R_{ONP} + R_L) \times I_{OUT} + L \times I_{RP} / t_{on} \quad \text{Equation 3}$$

Second, when Pch Tr. is "OFF" (Nch Tr. is "ON"), the following equation is satisfied.

$$L \times I_{RP} / t_{off} = R_{ONN} \times I_{OUT} + V_{OUT} + R_L \times I_{OUT} \quad \text{Equation 4}$$

Put Equation 4 into Equation 3 to solve ON duty of Pch Tr. ($D_{ON} = t_{on} / (t_{off} + t_{on})$):

$$D_{ON} = (V_{OUT} + R_{ONN} \times I_{OUT} + R_L \times I_{OUT}) / (V_{IN} + R_{ONN} \times I_{OUT} - R_{ONP} \times I_{OUT}) \quad \text{Equation 5}$$

Ripple Current is described as follows:

$$I_{RP} = (V_{IN} - V_{OUT} - R_{ONP} \times I_{OUT} - R_L \times I_{OUT}) \times D_{ON} / f_{osc} / L \quad \text{Equation 6}$$

Peak current that flows through L, and L_X Tr. is described as follows:

$$I_{LX_{max}} = I_{OUT} + I_{RP} / 2 \quad \text{Equation 7}$$

Notes: Please consider $I_{LX_{max}}$ when setting conditions of input and output, as well as selecting the external components. The above calculation formulas are based on the ideal operation of the ICs in continuous mode.
Timing Chart

(1) Soft-start Time

Starting-up with CE Pin

The IC starts to operate when the CE pin voltage \(V_{CE}\) exceeds the threshold voltage. The threshold voltage is preset between CE “H” input voltage \(V_{CEH}\) and CE “L” input voltage \(V_{CEL}\).

After the start-up of the IC, soft-start circuit starts to operate. Then, after a certain period of time, the reference voltage \(V_{REF}\) in the IC gradually increases up to the specified value.

Soft-start time starts when soft-start circuit is activated, and ends when the reference voltage reaches the specified voltage.

Notes: Soft start time is not always equal to the turn-on speed of the step-down DC/DC converter. Please note that the turn-on speed could be affected by the power supply capacity, the output current, the inductance value and the \(C_{OUT}\) value.
Starting-up with Power Supply

After the power-on, when V_{IN} exceeds the UVLO released voltage (V_{UVLO2}), the IC starts to operate. Then, soft-start circuit starts to operate and after a certain period of time, V_{REF} gradually increases up to the specified value. Soft-start time starts when soft-start circuit is activated, and ends when V_{REF} reaches the specified voltage.

![Timing Chart]

Notes: Please note that the turn-on speed of V_{OUT} could be affected by the power supply capacity, the output current, the inductance value, the C_{OUT} value and the turn-on speed of V_{IN} determined by C_{IN}.
(2) Under Voltage Lockout (UVLO) Circuit

If VIN becomes lower than VSET, the step-down DC/DC converter stops the switching operation and ON duty becomes 100%, and then VOUT gradually drops according to VIN.

If the VIN drops more and becomes lower than the UVLO detector threshold (VUVLO1), the UVLO circuit starts to operate, VREF stops, and Pch and Nch built-in switch transistors turn “OFF”. As a result, VOUT drops according to the COUT capacitance value and the load.

To restart the operation, VIN needs to be higher than VUVLO2. The timing chart below shows the voltage shifts of VREF, VLX and VOUT when VIN value is varied.

Timing Chart

Notes: Falling edge (operating) and rising edge (releasing) waveforms of VOUT could be affected by the initial voltage of COUT and the output current of VOUT.
(3) Over Current Protection Circuit, Latch Type Protection Circuit

Over current protection circuit supervises the inductor peak current (the peak current flowing through Pch Tr.) in each switching cycle, and if the current exceeds the Lx current limit (ILX,LIM), it turns off Pch Tr. ILX,LIM of the RP506L is set to Typ. 2800 mA.

Latch type protection circuit latches the built-in driver to the OFF state and stops the operation of the step-down DC/DC converter if the over current status continues or VOUT continues being the half of the setting voltage for equal or longer than protection delay time (tprot). To release the latch type protection circuit, restart the IC by inputting "L" signal to the CE pin, or restart the IC with power-on or make the supply voltage lower than VUVLO1.

Notes: ILX,LIM and tprot could be easily affected by self-heating or ambient environment. If the VIN drops dramatically or becomes unstable due to short-circuit, protection operation and tprot could be affected.
The timing chart below shows the voltage shift of V_{CE}, V_{LX} and V_{OUT} when the IC status is changed by the following orders: V_{IN} rising → stable operation → high load → CE reset → stable operation → V_{IN} falling → V_{IN} recovering (UVLO reset) → stable operation.

(1) If the large current flows through the circuit or the IC goes into low V_{OUT} condition due to short-circuit or other reasons, the latch type protection circuit latches the built-in driver to “OFF” state after t_{prot}. Then, V_{LX} becomes "L" and V_{OUT} turns “OFF”.

(2) The latch type protection circuit is released by CE reset, which puts the IC into "L" once with the CE pin and back into "H".

(3) The latch type protection circuit is released by UVLO reset, which makes V_{IN} lower than V_{UVLO1}.
APPLICATION INFORMATION

Typical Application

PG function is used, 30 ms Soft-start Time

(1) MODE = “H”: forced PWM control, MODE = “L”: PWM/VFM auto switching control

![Diagram of RP506Lxx1G/H/K/L (Fixed Output Voltage Type)]

PG function is not used, 150 µs Soft-start Time

(1) MODE = “H”: forced PWM control, MODE = “L”: PWM/VFM auto switching control

![Diagram of RP506L001N/M (Adjustable Output Voltage Type)]

\(^{(1)} V_{SET} > 3.3 \text{ V is only for RP506L001N/M.}\)
Table 1. Recommended External Components

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Size</th>
<th>Part Description</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{IN}</td>
<td>10 µF</td>
<td>Ceramic Capacitor</td>
<td>C1608JB0J106M (TDK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JMK107BJ106MA (TAIYO)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CGA4J1X7R0J106K125AC(TDK)</td>
</tr>
<tr>
<td></td>
<td>22 µF × 2</td>
<td>Ceramic Capacitor</td>
<td>C2012JB0J226M (TDK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CGA5L1X7R0J226M160AC(TDK)</td>
</tr>
<tr>
<td>C_{OUT}</td>
<td>10 µF × 3</td>
<td>Ceramic Capacitor</td>
<td>C1608JB0J106M (TDK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JMK107BJ106MA (TAIYO)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CGA4J1X7R0J106K125AC(TDK)</td>
</tr>
<tr>
<td>L (V_{SET} \leq 3.3 \text{ V})</td>
<td>2.2 µH</td>
<td>Inductor</td>
<td>SLF6045T-2R2N3R3 (TDK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CLF7045-2R2N (TDK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FDSD0415-2R2M (TOKO)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RLF7030T-2R2M5R4 (TDK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CLF7045-2R2N-D (TDK)</td>
</tr>
<tr>
<td>L (V_{SET} > 3.3 \text{ V})(^{(1)})</td>
<td>4.7 µH</td>
<td>Inductor</td>
<td>SLF6045T-4R7N2R4 (TDK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CLF7045-4R7N (TDK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FDSD0415-4R7M (TOKO)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RLF7030T-4R7M3R4 (TDK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CLF7045-4R7N-D (TDK)</td>
</tr>
</tbody>
</table>

Small and Low Profile External Components

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Size</th>
<th>Part Description</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>L (V_{SET} \leq 1.5 \text{ V})</td>
<td>1.0 µH</td>
<td>Inductor</td>
<td>DFE252010R-H-1R0M (TOKO)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VLS252010HBX-1R0M (TDK)</td>
</tr>
<tr>
<td>L (V_{SET} \leq 2.3 \text{ V})</td>
<td>1.5 µH</td>
<td>Inductor</td>
<td>DFE252010R-H-1R5M (TOKO)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VLS252010HBX-1R5M (TDK)</td>
</tr>
<tr>
<td>L</td>
<td>2.2 µH</td>
<td>Inductor</td>
<td>DFE252010R-H-2R2M (TOKO)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VLS252010HBX-2R2M (TDK)</td>
</tr>
</tbody>
</table>

\(^{(1)}\) V_{SET} > 3.3 \text{ V} is only for RP506L001N/M.
TECHNICAL NOTES

The performance of a power source circuit using this device is highly dependent on a peripheral circuit. A peripheral component or the device mounted on PCB should not exceed a rated voltage, a rated current or a rated power. When designing a peripheral circuit, please be fully aware of the following points.

- AGND and PGND must be wired to the GND plane when mounting on boards.
- AVIN and PVIN must be wired to the VIN plane when mounting on boards.
- Ensure the A/PGND and A/PVIN lines are sufficiently robust. A large switching current flows through the A/PGND line, the VDD line, the VOUT line, an inductor, and LX. If their impedance is too high, noise pickup or unstable operation may result. Set the external components as close as possible to the IC and minimize the wiring between the components and the IC. Especially, place a capacitor (CIN) as close as possible to the PVIN pin and PGND. For the RP506Lxx1G/H/K/L, separate the wiring between the VOUT pin and an inductor (L1) from the wiring between L1 and Load. Likewise, for the RP506L001N/M, separate the wiring between a resistor for setting output voltage (R1) and an inductor (L2) from the wiring between L2 and Load.
- Choose a low ESR ceramic capacitor. The ceramic capacitance of CIN should be more than or equal to 10 µF. For a ceramic capacitor (COUT), it is recommended that three paralleled 10 µF ceramic capacitors or two paralleled 22 µF ceramic capacitors be used.
- When VSET ≤ 3.3 V, a 2.2 μH inductor is recommended for RP506Lxx1G/H//N/K/L/M. When VSET ≤ 2.3 V, a 1.5 µH inductor can be used for RP506Lxx1G/H//N. When VSET ≤ 1.5 V, a 1 µH inductor can be used for RP506Lxx1G/H//N. When VSET > 3.3 V, a 4.7 µH inductor is recommended for RP506Lxx1G/H//N. The phase compensation of this IC is designed according to the COUT and L values. Choose an inductor that has small DC resistance, has enough allowable current and is hard to cause magnetic saturation. If the inductance value of an inductor is extremely small, the peak current of LX may increase along with the load current. As a result, over current protection circuit may start to operate when the peak current of LX reaches to “LX limit current”.

Set Output Voltage (VSET) Range vs. Inductance Range

<table>
<thead>
<tr>
<th>Version</th>
<th>RP506Lxx1G/H</th>
<th>RP506Lxx1K/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSET (V)</td>
<td>L = 1.0 µH, L = 1.5 µH, L = 2.2 µH</td>
<td>L = 2.2 µH</td>
</tr>
<tr>
<td>up to 1.5</td>
<td>Acceptable, Acceptable, Recommended</td>
<td>Recommended</td>
</tr>
<tr>
<td>1.6 to 2.3</td>
<td>-</td>
<td>Acceptable, Recommended</td>
</tr>
<tr>
<td>2.4 to 3.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.4 or more</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Version</th>
<th>RP506L001N</th>
<th>RP506L001M</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSET (V)</td>
<td>L = 1.0 µH, L = 1.5 µH, L = 2.2 µH, L = 4.7 µH</td>
<td>L = 2.2 µH, L = 4.7 µH</td>
</tr>
<tr>
<td>up to 1.5</td>
<td>Acceptable</td>
<td>-</td>
</tr>
<tr>
<td>1.6 to 2.3</td>
<td>-</td>
<td>Acceptable</td>
</tr>
<tr>
<td>2.4 to 3.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.4 or more</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Overcurrent protection circuit and latch type protection circuit may be affected by self-heating or power dissipation environment.

The output voltage (V\textsubscript{OUT}) is adjustable by changing the resistance values of resistors (R1, R2) as follows.

\[V_{OUT} = V_{FB} \times \frac{(R1 + R2)}{R2} \]

Recommended V\textsubscript{OUT} range for RP506L001M: 0.6 V \leq V_{SET} \leq 4.0 V,
Recommended V\textsubscript{OUT} range for RP506L001N: 0.8 V \leq V_{SET} \leq 4.0 V

If R1 and R2 are too large, the impedances of V\textsubscript{FB} also become large, as a result, the IC could be easily affected by noise. For this reason, R2 should be 220 k\textOmega{} or less. If the operation becomes unstable due to the high impedances, the impedances should be decreased.

C1 can be calculated by the following equations. Please use the value close to the calculation result.

If the output voltage is lower than or equal to 3.3 V:

\[C1 = 4.84 \times 10^{-6} / R2 \text{ [F]} \]

If the output voltage exceeds 3.3 V:

\[C1 = 1.50 \times 10^{-6} / R2 \text{ [F]} \]

The recommended resistance values for R1 and C1 when R2 = 220 k\textOmega{} or 100 k\textOmega{} are as follows.

<table>
<thead>
<tr>
<th>V\textsubscript{SET} [V]</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>1.2</th>
<th>1.8</th>
<th>2.5</th>
<th>3.3</th>
<th>3.8</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 [k\textOmega{}]</td>
<td>0</td>
<td>36.7</td>
<td>73.3</td>
<td>220</td>
<td>440</td>
<td>697</td>
<td>990</td>
<td>533</td>
<td>567</td>
</tr>
<tr>
<td>R2 [k\textOmega{}]</td>
<td>220</td>
<td>220</td>
<td>220</td>
<td>220</td>
<td>220</td>
<td>220</td>
<td>220</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>C1 [pF]</td>
<td>-</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Soft-start Time (t\textsubscript{start}) is adjustable by connecting a capacitor (C\textsubscript{SS}) between the TSS pin and GND. The capacitance value for C\textsubscript{SS} that is suitable for t\textsubscript{start} can be calculated by the following equation.

\[C_{SS} (\text{nF}) = 3.5 \times t_{start} (\text{ms}) \]

The TSS pin must be open if Soft-start time function is not used. Soft-start time is set to typically 150 \mu s when the TSS pin is open.

When using the power good function, the resistance value of a resistor (R\textsubscript{PG}) should be between 10 k\textOmega{} to 100 k\textOmega{}. The PG pin must be open or connected to GND if the power good function is not used.
PCB Layout

RP506Lxx1G/H/K/L (PKG: DFN3030-12 pin) PCB Layout

Topside
Backside

RP506L001N/M (PKG: DFN3030-12 pin) PCB Layout

Topside
Backside

R11 and R12 are arranged as a substitute for R1 so that two resistors can be connected in series.
TYPICAL PERFORMANCE CHARACTERISTICS

Note: Typical performance characteristics are intended to be used as reference data; they are not guaranteed.

1) Output Voltage vs. Output Current

RP506Lxx1G/H/N \(V_{OUT} = 1.2 \) V
MODE = “L” PWM/VFM Auto Switching Control

RP506Lxx1G/H/N \(V_{OUT} = 1.5 \) V
MODE = “L” PWM/VFM Auto Switching Control

RP506Lxx1G/H/N \(V_{OUT} = 1.8 \) V
MODE = “L” PWM/VFM Auto Switching Control

RP506Lxx1G/H/N \(V_{OUT} = 1.2 \) V
MODE = “H” Forced PWM Control

RP506Lxx1G/H/N \(V_{OUT} = 1.5 \) V
MODE = “H” Forced PWM Control

RP506Lxx1G/H/N \(V_{OUT} = 1.8 \) V
MODE = “H” Forced PWM Control

Vin=3.6V
Vin=5.0V
Vin=5.0V
Vin=3.3V
RP506Lxx1G/H/N $V_{OUT} = 3.3\, V$
MODE = “L”PWM/VFM Auto Switching Control

RP506Lxx1G/H/N $V_{OUT} = 3.3\, V$
MODE = “H” Forced PWM Control

RP506Lxx1K/L/M $V_{OUT} = 0.6\, V$
MODE = “L”PWM/VFM Auto Switching Control

RP506Lxx1K/L/M $V_{OUT} = 0.6\, V$
MODE = “H” Forced PWM Control

RP506Lxx1K/L/M $V_{OUT} = 0.8\, V$
MODE = “L”PWM/VFM Auto Switching Control

RP506Lxx1K/L/M $V_{OUT} = 0.8\, V$
MODE = “H” Forced PWM Control
RP506L-Y

No. EA-391-180322

RP506Lxx1K/L/M $V_{OUT} = 1.2 \, V$
MODE = “L” PWM/VFM Auto Switching Control

RP506Lxx1K/L/M $V_{OUT} = 1.2 \, V$
MODE = “H” Forced PWM Control

RP506Lxx1K/L/M $V_{OUT} = 1.8 \, V$
MODE = “L” PWM/VFM Auto Switching Control

RP506Lxx1K/L/M $V_{OUT} = 1.8 \, V$
MODE = “H” Forced PWM Control

RP506Lxx1K/L/M $V_{OUT} = 3.3 \, V$
MODE = “L” PWM/VFM Auto Switching Control

RP506Lxx1K/L/M $V_{OUT} = 3.3 \, V$
MODE = “H” Forced PWM Control

Output Current $I_{OUT} (mA)$

Output Voltage $V_{OUT} (V)$
2) Output Voltage vs. Input Voltage

RP506Lxx1K/L/M
\[\text{\, VOUT = 0.6 V} \quad \text{\, MODE = "H" Forced PWM Control} \]

RP506Lxx1K/L/M
\[\text{\, VOUT = 0.8 V} \quad \text{\, MODE = "H" Forced PWM Control} \]

RP506L
\[\text{\, VOUT = 1.2 V} \quad \text{\, MODE = "H" Forced PWM Control} \]

RP506L
\[\text{\, VOUT = 1.8 V} \quad \text{\, MODE = "H" Forced PWM Control} \]

RP506L
\[\text{\, VOUT = 3.3 V} \quad \text{\, MODE = "H" Forced PWM Control} \]
3) Output Voltage vs. Ambient Temperature

\[V_{OUT} = 1.8 \text{ V} \]

4) Feedback Voltage vs. Ambient Temperature

\[V_{FB} = ? \text{ V} \]

5) Efficiency vs. Output Current

\[V_{OUT} = 1.2 \text{ V} \]

\[V_{OUT} = 1.5 \text{ V} \]

\[V_{OUT} = 3.3 \text{ V} \]
RP506Lxx1K/L/M $V_{OUT} = 0.6$ V

![Graph showing efficiency vs. output current for $V_{OUT} = 0.6$ V.](image)

- $V_{IN} = 4.5V$, $V_{MODE} = 0V$
- $V_{IN} = 3.6V$, $V_{MODE} = 0V$
- $V_{IN} = 5.0V$, $V_{MODE} = 0V$
- $V_{IN} = 3.6V$, $V_{MODE} = 3.6V$

RP506Lxx1K/L/M $V_{OUT} = 0.8$ V

![Graph showing efficiency vs. output current for $V_{OUT} = 0.8$ V.](image)

- $V_{IN} = 5.0V$, $V_{MODE} = 0V$
- $V_{IN} = 3.6V$, $V_{MODE} = 0V$
- $V_{IN} = 5.0V$, $V_{MODE} = 5.0V$
- $V_{IN} = 3.6V$, $V_{MODE} = 3.6V$

RP506Lxx1K/L/M $V_{OUT} = 1.2$ V

![Graph showing efficiency vs. output current for $V_{OUT} = 1.2$ V.](image)

- $V_{IN} = 5.0V$, $V_{MODE} = 0V$
- $V_{IN} = 5.0V$, $V_{MODE} = 0V$
- $V_{IN} = 5.0V$, $V_{MODE} = 5.0V$
- $V_{IN} = 3.6V$, $V_{MODE} = 3.6V$

RP506Lxx1K/L/M $V_{OUT} = 1.8$ V

![Graph showing efficiency vs. output current for $V_{OUT} = 1.8$ V.](image)

- $V_{IN} = 5.0V$, $V_{MODE} = 0V$
- $V_{IN} = 3.6V$, $V_{MODE} = 0V$
- $V_{IN} = 5.0V$, $V_{MODE} = 5.0V$
- $V_{IN} = 3.6V$, $V_{MODE} = 3.6V$

RP506Lxx1K/L/M $V_{OUT} = 3.3$ V

![Graph showing efficiency vs. output current for $V_{OUT} = 3.3$ V.](image)

- $V_{IN} = 4.3V$, $V_{MODE} = 0V$
- $V_{IN} = 5.0V$, $V_{MODE} = 0V$
- $V_{IN} = 5.0V$, $V_{MODE} = 5.0V$
- $V_{IN} = 4.3V$, $V_{MODE} = 4.3V$
6) Supply Current vs. Ambient Temperature

RP506L \(V_{OUT} = 1.8 \text{ V} \) (\(V_{IN} = 5.5 \text{ V} \))
MODE = “L”PWM/VFM Auto Switching Control

7) Supply Current vs. Input Voltage

RP506L \(V_{OUT} = 1.8 \text{ V} \)
MODE = “L”PWM/VFM Auto Switching Control

8) Output Voltage Waveform

RP506Lxx1G/H/N \(V_{OUT} = 0.8 \text{ V} \) (\(V_{IN} = 3.6 \text{ V} \))
MODE = “L”PWM/VFM Auto Switching Control

RP506Lxx1G/H/N \(V_{OUT} = 1.2 \text{ V} \) (\(V_{IN} = 3.6 \text{ V} \))
MODE = “L”PWM/VFM Auto Switching Control

MODE = “H” Forced PWM Control

\(I_{OUT} = 10 \text{ mA} \)
RP506Lxx1G/H/N
V\text{OUT} = 1.8 \text{ V (V_IN = 3.6 V)}
MODE = “L” PWM/VFM Auto Switching Control

RP506Lxx1G/H/N
V\text{OUT} = 1.8 \text{ V (V_IN = 3.6 V)}
MODE = “H” Forced PWM Control

RP506Lxx1K/L/M
V\text{OUT} = 0.6 \text{ V (V_IN = 3.6 V)}
MODE = “L” PWM/VFM Auto Switching Control

RP506Lxx1K/L/M
V\text{OUT} = 0.6 \text{ V (V_IN = 3.6 V)}
MODE = “H” Forced PWM Control
RP506Lx1K/L/M \(V_{OUT} = 0.8 \, V \) (\(V_{IN} = 3.6 \, V \))

MODE = “L” PWM/VFM Auto Switching Control

![Graph 1](image1)

MODE = “H” Forced PWM Control

![Graph 2](image2)

RP506Lx1K/L/M \(V_{OUT} = 1.2 \, V \) (\(V_{IN} = 3.6 \, V \))

MODE = “L” PWM/VFM Auto Switching Control

![Graph 3](image3)

MODE = “H” Forced PWM Control

![Graph 4](image4)

RP506Lx1K/L/M \(V_{OUT} = 1.8 \, V \) (\(V_{IN} = 3.6 \, V \))

MODE = “L” PWM/VFM Auto Switching Control

![Graph 5](image5)

MODE = “H” Forced PWM Control

![Graph 6](image6)
RP506Lxx1K/L/M $V_{OUT} = 3.3 \text{ V (}V_{IN} = 5.0 \text{ V)}$

MODE = “L” PWM/VFM Auto Switching Control

![Plot 1](image)

RP506Lxx1K/L/M $V_{OUT} = 3.3 \text{ V (}V_{IN} = 5.0 \text{ V)}$

MODE = “H” Forced PWM Control

![Plot 2](image)

9) Oscillator Frequency vs. Ambient Temperature

![Plot 3](image)

10) Oscillator Frequency vs. Input Voltage

![Plot 4](image)
11) Soft-start Time vs. Ambient Temperature

![Graph showing soft-start time vs. ambient temperature]

12) UVLO Detector Threshold/Released Voltage vs. Ambient Temperature

UVLO Detector Threshold

![Graph showing UVLO detector threshold]

UVLO Released Voltage

![Graph showing UVLO released voltage]

13) CE Input Voltage vs. Ambient Temperature

CE“H” Input Voltage \((V_{IN} = 5.5 \text{ V}) \)

![Graph showing CE“H” input voltage]

CE“L” Input Voltage \((V_{IN} = 2.5 \text{ V}) \)

![Graph showing CE“L” input voltage]
14) Lx Limit Current vs. Ambient Temperature

15) Nch Tr. On Resistance vs. Ambient Temperature
16) Pch Tr. On Resistance vs. Ambient Temperature

16) PG Detector Threshold vs. Ambient Temperature

- Overvoltage Detection V_{OVD}
- Undervoltage Detection V_{UVD}
18) Soft-start Waveform

RP506L $V_{OUT} = 1.8$ V, TSS = Open

RP506L $V_{OUT} = 1.8$ V, TSS = 0.1 μF

19) Load Transient Response

RP506Lxx1G/H/N ($V_{IN} = 3.6$ V, $V_{OUT} = 0.8$ V)
MODE = “L”PWM/VFM Auto Switching Control
RP506Lxx1G/H/N (V_in = 3.6 V, V_out = 1.8 V)
MODE = "L" PWM/VFM Auto Switching Control

- Output Voltage V_out (V)
- Output Current I_out (mA)
- Time t (μs)

RP506Lxx1G/H/N (V_in = 3.6 V, V_out = 1.8 V)
MODE = "H" Forced PWM Control

- Output Voltage V_out (V)
- Output Current I_out (mA)
- Time t (μs)
RP506Lxx1G/H/N (V\text{IN} = 5.0 \text{ V}, V\text{OUT} = 3.3 \text{ V})

MODE = “L” PWM/VFM Auto Switching Control

\[\text{Time } t (\mu s)\]
\[\text{Output Voltage } V_{\text{OUT}} \text{ (V)}\]
\[\text{Output Current } I_{\text{OUT}} \text{ (mA)}\]

RP506Lxx1G/H/N (V\text{IN} = 5.0 \text{ V}, V\text{OUT} = 3.3 \text{ V})

MODE = “H” Forced PWM Control

\[\text{Time } t (\mu s)\]
\[\text{Output Voltage } V_{\text{OUT}} \text{ (V)}\]
\[\text{Output Current } I_{\text{OUT}} \text{ (mA)}\]

RP506Lxx1G/H/N (V\text{IN} = 5.0 \text{ V}, V\text{OUT} = 3.3 \text{ V})

\[\text{Time } t (\mu s)\]
\[\text{Output Voltage } V_{\text{OUT}} \text{ (V)}\]
\[\text{Output Current } I_{\text{OUT}} \text{ (mA)}\]

RP506Lxx1G/H/N (V\text{IN} = 5.0 \text{ V}, V\text{OUT} = 3.3 \text{ V})

\[\text{Time } t (\mu s)\]
\[\text{Output Voltage } V_{\text{OUT}} \text{ (V)}\]
\[\text{Output Current } I_{\text{OUT}} \text{ (mA)}\]
RP506Lx1K/L/M (\(V_{IN} = 3.6\, \text{V}, \, V_{OUT} = 0.6\, \text{V}\))

- **MODE = “L”** PWM/VFM Auto Switching Control

- **MODE = “H”** Forced PWM Control

Output Voltage \(V_{OUT}\) (V)

Output Current \(I_{OUT}\) (mA)

Time \(t\) (us)

Output Voltage

Output Current

200mA --> 1000mA

1000mA --> 200mA

RP506Lxx1K/L/M (\(V_{IN} = 3.6\, \text{V}, \, V_{OUT} = 0.6\, \text{V}\))

No. EA-391-180322
RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 0.8 V)
MODE = “L” PWM/VFM Auto Switching Control

Output Current
200mA --> 1000mA

Output Voltage

0.70 0.75 0.80 0.85 0.90

Time t (μs)

Output Voltage VOUT (V)

Output Current IOUT (mA)

0 20 40 60 80 100 120 140 160 180

RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 0.8 V)
MODE = “H” Forced PWM Control

Output Current
200mA --> 1000mA

Output Voltage

0.70 0.75 0.80 0.85 0.90

Time t (μs)

Output Voltage VOUT (V)

Output Current IOUT (mA)

0 20 40 60 80 100 120 140 160 180

RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 0.8 V)
MODE = “H” Forced PWM Control

Output Current
1000mA --> 200mA

Output Voltage

0.70 0.75 0.80 0.85 0.90

Time t (μs)

Output Voltage VOUT (V)

Output Current IOUT (mA)

0 20 40 60 80 100 120 140 160 180

RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 0.8 V)
MODE = “H” Forced PWM Control

Output Current
1000mA --> 200mA

Output Voltage

0.70 0.75 0.80 0.85 0.90

Time t (μs)

Output Voltage VOUT (V)

Output Current IOUT (mA)

0 20 40 60 80 100 120 140 160 180
RP506L-Y

No. EA-391-180322

RP506Lxx1K/L/M (V_{IN} = 3.6 V, V_{OUT} = 1.2 V)
MODE = “L” PWM/VFM Auto Switching Control

RP506Lxx1K/L/M (V_{IN} = 3.6 V, V_{OUT} = 1.2 V)
MODE = “H” Forced PWM Control

RP506Lxx1K/L/M (V_{IN} = 3.6 V, V_{OUT} = 1.2 V)
MODE = “H” Forced PWM Control

RP506Lxx1K/L/M (V_{IN} = 3.6 V, V_{OUT} = 1.2 V)
 MODE = “L” PWM/VFM Auto Switching Control

RP506Lxx1K/L/M (V_{IN} = 3.6 V, V_{OUT} = 1.2 V)
 MODE = “H” Forced PWM Control

RP506Lxx1K/L/M (V_{IN} = 3.6 V, V_{OUT} = 1.2 V)
 MODE = “H” Forced PWM Control
RP506Lxx1K/L/M (V_IN = 3.6 V, V_OUT = 1.8 V)
MODE = “L” PWM/VFM Auto Switching Control

Output Voltage V_OUT (V)
-20 0 20 40 60 80 100 120 140 160 180

Output Current I_OUT (mA)
0 500 1000 1500

Output Voltage V_OUT (V)
-20 0 20 40 60 80 100 120 140 160 180

Output Current I_OUT (mA)
0 500 1000 1500

MODE = “H” Forced PWM Control

Output Voltage V_OUT (V)
-20 0 20 40 60 80 100 120 140 160 180

Output Current I_OUT (mA)
0 500 1000 1500

Output Voltage V_OUT (V)
-20 0 20 40 60 80 100 120 140 160 180

Output Current I_OUT (mA)
0 500 1000 1500

Output Voltage V_OUT (V)
-20 0 20 40 60 80 100 120 140 160 180

Output Current I_OUT (mA)
0 500 1000 1500
RP506Lxx1K/L/M (VIN = 5.0 V, VOUT = 3.3 V) MODE = “L” PWM/VFM Auto Switching Control

RP506Lxx1K/L/M (VIN = 5.0 V, VOUT = 3.3 V) MODE = “H” Forced PWM Control

RP506Lxx1K/L/M (VIN = 5.0 V, VOUT = 3.3 V)
20) Auto Switching Control Waveform

RP506Lxx1G/H/N (VIN = 3.6 V, VOUT = 1.2 V, IOUT = 1 mA)

MODE = “L” \(\rightarrow\) MODE = “H”

RP506Lxx1G/H/N (VIN = 3.6 V, VOUT = 1.8 V, IOUT = 1 mA)

MODE = “L” \(\rightarrow\) MODE = “H”

RP506Lxx1K/L/M (VIN = 3.6 V, VOUT = 1.2 V, IOUT = 1 mA)

MODE = “L” \(\rightarrow\) MODE = “H”
RP506Lxx1K/L/M (V_{IN} = 3.6 V, V_{OUT} = 1.8 V, I_{OUT} = 1 mA)

MODE = “L” → MODE = “H”

![Graph 1](image1)

MODE = “H” → MODE = “L”

![Graph 2](image2)
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

<table>
<thead>
<tr>
<th>Item</th>
<th>Measurement Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>Mounting on Board (Wind Velocity = 0 m/s)</td>
</tr>
<tr>
<td>Board Material</td>
<td>Glass Cloth Epoxy Plastic (Four-Layer Board)</td>
</tr>
<tr>
<td>Board Dimensions</td>
<td>76.2 mm × 114.3 mm × 0.8 mm</td>
</tr>
<tr>
<td>Copper Ratio</td>
<td>Outer Layer (First Layer): Less than 95% of 50 mm Square</td>
</tr>
<tr>
<td></td>
<td>Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square</td>
</tr>
<tr>
<td></td>
<td>Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square</td>
</tr>
<tr>
<td>Through-holes</td>
<td>φ 0.3 mm × 32 pcs</td>
</tr>
</tbody>
</table>

Measurement Result (Ta = 25°C, Tjmax = 125°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Measurement Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Dissipation</td>
<td>3400 mW</td>
</tr>
<tr>
<td>Thermal Resistance (θja)</td>
<td>θja = 29°C/W</td>
</tr>
<tr>
<td>Thermal Characterization Parameter (ψjt)</td>
<td>ψjt = 3.1°C/W</td>
</tr>
</tbody>
</table>

θja: Junction-to-Ambient Thermal Resistance

ψjt: Junction-to-Top Thermal Characterization Parameter

![Power Dissipation vs. Ambient Temperature](image1)

![Measurement Board Pattern](image2)
DFN3030-12 Package Dimensions (Unit: mm)

* The tab on the bottom of the package is substrate level (GND). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.
1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.

2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.

3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.

4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh’s or any third party’s intellectual property rights or any other rights.

5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a Ricoh product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, space vehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.

6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.

7. Anti-radiation design is not implemented in the products described in this document.

8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.

9. WL CSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.

10. There can be a variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.

11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.
Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

Ricoh is RoHS Compliant
Ricoh is Halogen Free

https://www.e-devices.ricoh.co.jp/en/