OUTLINE

The RP501K Series are CMOS-based step-down DC/DC Converters with synchronous rectifier. Each of these ICs consists of an oscillator, a switching control circuit, a reference voltage unit, an error amplifier, a soft-start circuit, protection circuits, UVLO circuit, switching transistors. A low ripple, high efficiency step-down DC/DC converter can be easily composed of this IC with only an inductor and capacitors. In terms of the output voltage, since the feedback resistances are built-in, the voltage is fixed internally. 50mV (custom-made) step output can be set by laser-trim and ±1.5% or ±24mV tolerance depending on the output voltage is guaranteed.

Mode alternative circuit works automatically for improving the efficiency. Considering fixed noise frequency, PWM fixed control type is also available. As protection circuits, the current limit circuit which limits peak current of LX at each clock cycle, and the latch type protection circuit which works if the term of the over-current condition keeps on a certain time exist. The latch-type protection circuit works to latch an internal driver with keeping it disable. To release the condition of the protection, after disabling this IC with a chip enable circuit, enable it again, or restart this IC with power-on or make the supply voltage at UVLO detector threshold level or lower than UVLO. Since the package is DFN(PLP)2527-10, high density mounting on boards is possible.

FEATURES

- Input Voltage Range ..2.5V to 5.5V
- Output Voltage ...1.0V to 3.3V
- High Accuracy Output Voltage±1.5% (VOUT≥1.6V) ±24mV (VOUT<1.6V)
- Oscillator Frequency ..Typ. 2.25MHz
- Built-in Soft start FunctionMax.0.2ms
- Built-in Peak current limitTyp.1.5A
- Built-in UVLO Function ..Typ. 2.2V
- Switching Mode can be controlled by Mode pinAutomatic PWM/VFM mode change / PWM fixed
- Package ...DFN(PLP)2527-10

APPLICATIONS

- Power source for portable equipment such as cellular, PDA, DSC, Notebook PC
- Power source for HDD, WLA N, Car accessories
- Power source for Li-ion battery-used equipment
Mode="H": PWM/VFM alternative, Mode="L": PWM fix control
Test Pin must be connected to GND.
Selection Guide

In the RP501K series, output voltage and version can be designated with user's request. Part number can be designated as follows:

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Package</th>
<th>Quantity per Reel</th>
<th>Pb Free</th>
<th>Halogen Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP501Kxx1*-TR</td>
<td>DFN(PLP)2527-10</td>
<td>5,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

xx : Designation of output voltage \(V_{out}\):
Designation is possible in the range from 1.0V to 3.3V with a step of 0.1V

* : Designation of Active Type
(A) without auto-discharge function
(B) with auto-discharge function

When the mode is into standby with CE signal, auto-discharge transistor turns on, and it makes the turn-off speed faster than normal type.

* Stepwise setting with 0.05V is possible by custom-made.
PIN CONFIGURATION

DFN(PLP)2527-10

PIN DESCRIPTIONS

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CE</td>
<td>Chip Enable Pin ("H" Active)</td>
</tr>
<tr>
<td>2</td>
<td>TEST1</td>
<td>Test Pin 1 (Connect this pin to the GND)</td>
</tr>
<tr>
<td>3</td>
<td>AGND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>4</td>
<td>PGND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>5</td>
<td>Lx</td>
<td>Switch Output Pin</td>
</tr>
<tr>
<td>6</td>
<td>PVIN</td>
<td>Input Pin</td>
</tr>
<tr>
<td>7</td>
<td>TEST2</td>
<td>Test Pin 2 (Connect this pin to the GND)</td>
</tr>
<tr>
<td>8</td>
<td>MODE</td>
<td>Mode Control Pin</td>
</tr>
<tr>
<td>9</td>
<td>AVIN</td>
<td>Input Pin</td>
</tr>
<tr>
<td>10</td>
<td>VOUT</td>
<td>Output Pin</td>
</tr>
</tbody>
</table>

* Tab is GND level. (They are connected to the reverse side of this IC.) The tab is better to be connected to the GND, but leaving it open is also acceptable.

* All VIN terminals must be connected.

* All GND terminals must be connected.
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVIN</td>
<td>AVIN Supply Voltage</td>
<td>-0.3 to 6.5</td>
<td>V</td>
</tr>
<tr>
<td>PVIN</td>
<td>PVIN Supply Voltage</td>
<td>-0.3 to 6.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{LX}</td>
<td>Lx Pin Voltage</td>
<td>-0.3 to A/PVIN+0.3</td>
<td>V</td>
</tr>
<tr>
<td>V_{CE}</td>
<td>CE Pin Input Voltage</td>
<td>-0.3 to 6.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{MODE}</td>
<td>MODE Pin Input Voltage</td>
<td>-0.3 to 6.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>V_{OUT} Pin Voltage</td>
<td>-0.3 to 6.5</td>
<td>V</td>
</tr>
<tr>
<td>I_{LX}</td>
<td>Lx Pin Output Current</td>
<td>1.5</td>
<td>A</td>
</tr>
<tr>
<td>P_{D}</td>
<td>Power Dissipation *</td>
<td>910</td>
<td>mW</td>
</tr>
<tr>
<td>T_{a}</td>
<td>Operating Temp. Range</td>
<td>-40 to 85</td>
<td>°C</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>Storage Temp. Range</td>
<td>-55 to 125</td>
<td>°C</td>
</tr>
</tbody>
</table>

*) For Power Dissipation, please refer to PACKAGE INFORMATION.

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.
ELECTRICAL CHARACTERISTICS

RP501Kxx1x

Ta=25°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/PVIN</td>
<td>Operating Input Voltage</td>
<td>A/PVIN=VCE=3.6V, VMODE=0V VOUT≥1.6V VOUT<1.6V</td>
<td>-1.5%</td>
<td>+1.5%</td>
<td>0.024</td>
<td>%</td>
</tr>
<tr>
<td>VOUT</td>
<td>Step-down Output Voltage</td>
<td>A/PVIN=VCE=3.6V, VMODE=0V VOUT<1.6V VOUT≥1.6V</td>
<td>-0.024</td>
<td>0.024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔVOUT/ΔTa</td>
<td>Step-down Output Voltage Temperature Coefficient</td>
<td>-40°C≤Ta≤85°C</td>
<td>±100</td>
<td>ppm/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fosc</td>
<td>Oscillator Frequency</td>
<td>A/PVIN=VCE=3.6V</td>
<td>2.025</td>
<td>2.25</td>
<td>2.475</td>
<td>MHz</td>
</tr>
<tr>
<td>Idd1</td>
<td>Supply Current 1</td>
<td>A/PVIN=VCE=5.5V, VOUT=0</td>
<td>450</td>
<td>650</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Idd2</td>
<td>Supply Current 2</td>
<td>A/PVIN=VCE=VOUT=5.5V</td>
<td>140</td>
<td>210</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Istandby</td>
<td>Standby Current</td>
<td>A/PVIN=5.5V, VCE=0V</td>
<td>0</td>
<td>5</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>ILXleak</td>
<td>LX Leakage Current</td>
<td>A/PVIN=5.5V, VCE=0V</td>
<td>-5</td>
<td>0</td>
<td>5</td>
<td>μA</td>
</tr>
<tr>
<td>Ronp</td>
<td>On Resistance of Pch Tr.</td>
<td>A/PVIN=5.0V, ILX=-100mA</td>
<td>0.25</td>
<td>0.35</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>RONN</td>
<td>On Resistance of Nch Tr.</td>
<td>A/PVIN=5.0V, ILX=-100mA</td>
<td>0.25</td>
<td>0.35</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Maxduty</td>
<td>Max Duty Ratio</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>tstart</td>
<td>Soft-start Time</td>
<td>A/PVIN=VCE=3.6V</td>
<td>0.14</td>
<td>0.2</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>tpot</td>
<td>Protection Delay Time</td>
<td>A/PVIN=VCE=3.6V</td>
<td>0.5</td>
<td>2.0</td>
<td>6.0</td>
<td>ms</td>
</tr>
<tr>
<td>ILXlim</td>
<td>LX Current Limit</td>
<td>A/PVIN=VCE=3.6V</td>
<td>1.2</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vuvlo1</td>
<td>UVLO Detector Voltage</td>
<td>A/PVIN=VCE</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>V</td>
</tr>
<tr>
<td>Vuvlo2</td>
<td>UVLO Released Voltage</td>
<td>A/PVIN=VCE</td>
<td>2.2 VUVLO1 +0.1</td>
<td>2.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ICE</td>
<td>CE Input Current</td>
<td>A/PVIN=5.5V, VCE=5.5V/0V</td>
<td>-0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>μA</td>
</tr>
<tr>
<td>IVOUT</td>
<td>VOUT Input Current</td>
<td>A/PVIN=5.5V, VCE=0V</td>
<td>-0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>μA</td>
</tr>
<tr>
<td>RLOW</td>
<td>Nch On Resistance for Auto Discharge</td>
<td>A/PVIN=5.5V, VCE=0V</td>
<td>150</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>VCEH</td>
<td>CE "H" Input Voltage</td>
<td>A/PVIN=5.5V</td>
<td>1.0</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VCEL</td>
<td>CE "L" Input Voltage</td>
<td>A/PVIN=3.0V</td>
<td>0.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>IMODE</td>
<td>Mode Input Current</td>
<td>A/PVIN=5.5V, VMODE=5.5V/0V</td>
<td>-0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>μA</td>
</tr>
<tr>
<td>VMODEH</td>
<td>Mode "H" Input Voltage</td>
<td>A/PVIN=VCE=5.5V</td>
<td>1.0</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VMODEL</td>
<td>Mode "L" Input Voltage</td>
<td>A/PVIN=VCE=3.0V</td>
<td>0.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Test circuit is "OPEN LOOP" and A/PVIN=VCE=3.6V, AGND=PGND=0V unless otherwise noted.

*1) without auto-discharge type
*2) with auto-discharge type
TEST CIRCUITS

- **Output Voltage**
- **Oscillator Frequency**
- **Supply Current 1 / 2**
- **Standby Current**
- **Lx Leakage Current**
- **Pch • Nch ON Resistance / Protection Delay Time / Lx Current Limit**
RP501K

Soft-start Time

UVLO Detector Voltage / Released Voltage

CE-MODE Input Current "H"/"L"

Vout Input Current /
Nch On Resistance for Auto Discharge

CE Input Voltage

MODE Input Voltage
TECHNICAL NOTES

When you use these ICs, consider the following issues:

- Set the same level as AGND and PGND.
- Set external components such as an inductor, C_{IN}, C_{OUT} as close as possible to the IC, in particular, minimize the wiring to V_{IN} pin and PGND pin. The wiring between V_{OUT} and load and between L and V_{OUT} should be separated.
- Use an external capacitor C_{IN} between V_{IN} and GND, and C_{OUT} with a capacity of 4.7 µF or more ceramic type.
- Choose an inductor with appropriate inductance range. The phase compensation has been made by these values with output capacitors. The recommendation characteristics of the inductor are low DC resistance, large enough permissible current, and strong against the magnetic saturation. Inductance value may shift depending on an inductor. If the inductance value at an actual load current is low, L_X peak current may increase and may overlap the L_X current limit. As a result, over current protection may work.
- Over current protection circuit may be affected by self-heating and heat radiation environment.
- Reinforce the V_{IN}, PGND, and V_{OUT} lines sufficiently. Large switching current may flow in these lines. If the impedance of V_{IN} and PGND lines is too large, the internal voltage level in this IC may shift caused by the switching current, and the operation might be unstable.

The performance of power source circuits using these ICs extremely depends upon the peripheral circuits. Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their respected rated values (such as the voltage, current, and power).
Operation of step-down DC/DC converter and Output Current

The DC/DC converter charges energy in the inductor when Lx transistor is ON, and discharges the energy from the inductor when Lx transistor is OFF and controls with less energy loss, so that a lower output voltage than the input voltage is obtained. The operation will be explained with reference to the following diagrams:

<Basic Circuits>

![Basic Circuits Diagram](image)

<Current through L>

![Current through L Diagram](image)

Step 1: P-channel Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment, IL increases from ILmin (=0) to reach ILmax in proportion to the on-time period (ton) of P-channel Tr.

Step 2: When P-channel Tr. turns off, Synchronous rectifier N-channel Tr. turns on in order that L maintains IL at ILmax, and current IL (=i2) flows.

Step 3: IL (=i2) decreases gradually and reaches IL=ILmin=0 after a time period of topen, and N-channel Tr. turns off. Provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff time is not enough. In this case, IL value increases from this ILmin (>0).

In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with the oscillator frequency (fosc) being maintained constant.

The maximum value (ILmax) and the minimum value (ILmin) of the current flowing through the inductor are the same as those when P-channel Tr. turns on and off.

The difference between ILmax and ILmin, which is represented by ΔI:

\[
\Delta I = IL_{\text{max}} - IL_{\text{min}} = V_{\text{OUT}} \times \text{topen} / L = (V_{\text{IN}} - V_{\text{OUT}}) \times \text{ton} / L
\]

Equation 1

wherein,

\[
T = 1 / f_{\text{osc}} = \text{ton} + \text{toff}
\]

\[
\text{duty (\%)} = \text{ton} / T \times 100 = \text{ton} \times f_{\text{osc}} \times 100
\]

\[
\text{topen} \leq \text{toff}
\]

In Equation 1, \(V_{\text{OUT}} \times \text{topen}/L\) and \((V_{\text{IN}} - V_{\text{OUT}}) \times \text{ton}/L\) respectively show the change of the current at "ON", and the change of the current at "OFF".
Discontinuous mode and Continuous mode

When the output current (I_{out}) is relatively small, t_{open} < t_{off} as illustrated in the following diagram. In this case, the energy is charged in the inductor during the time period of t_{on} and is discharged in its entirely during the time period of t_{off}, therefore I_{Lmin} becomes to zero (I_{Lmin}=0). When I_{out} is gradually increased, eventually, t_{open} becomes to t_{off} (t_{open}=t_{off}), and when I_{out} is further increased, I_{Lmin} becomes larger than zero (I_{Lmin}>0). The former mode is referred to as the discontinuous mode and the latter mode is referred to as continuous mode.

In the continuous mode, when Equation 1 is solved for t_{on} and assumed that the solution is t_{onc},

$$t_{onc} = T \times V_{OUT} / V_{IN}$$... Equation 2

When t_{on}<t_{onc}, the mode is the discontinuous mode, and when t_{on}=t_{onc}, the mode is the continuous mode.
Output Current and selection of External components

The relation between the output current and external components is as follows:

When P-channel Tr. of Lx is ON:
(Wherein, Ripple Current P-P value is described as \(I_{RP}\), ON resistance of P-channel Tr. and N-channel Tr. of Lx are respectively described as \(R_{ONP}\) and \(R_{ONN}\), and the DC resistor of the inductor is described as \(R_{L}\))

\[V_{IN} = V_{OUT} + (R_{ONP} + R_{L}) \times I_{OUT} + L \times I_{RP} / t_{on} \] ...Equation 3

When P-channel Tr. of Lx is "OFF"(N-channel Tr. is "ON"):

\[L \times I_{RP} / t_{off} = R_{ONN} \times I_{OUT} + V_{OUT} + R_{L} \times I_{OUT} \] ...Equation 4

Put Equation 4 to Equation 3 and solve for ON duty of P-channel transistor, \(t_{on}/(t_{off} + t_{on}) = D_{ON}\),

\[D_{ON} = (V_{OUT} + R_{ONN} \times I_{OUT} + R_{L} \times I_{OUT}) / (V_{IN} + R_{ONN} \times I_{OUT} - R_{ONP} \times I_{OUT}) \]Equation 5

Ripple Current is as follows:

\[I_{RP} = (V_{IN} - V_{OUT} - R_{ONP} \times I_{OUT} - R_{L} \times I_{OUT}) \times D_{ON} / f_{osc} / L \] ...Equation 6

wherein, peak current that flows through L, and Lx Tr. is as follows:

\[I_{LMAX} = I_{OUT} + I_{RP} / 2 \] ..Equation 7

*Consider \(I_{LMAX}\), condition of input and output and select external components.

*The above explanation is directed to the calculation in an ideal case in continuous mode.
TIMING CHART

(1) Soft Start Time

In the case of starting this IC with CE

In the case of starting this IC with CE, the operation can be as in the timing chart below.

When the voltage of CE pin (V_{CE}) is beyond the threshold level, the operation of the IC starts. The threshold voltage of CE pin is in between CE "H" input voltage (V_{CEH}) and CE "L" input voltage (V_{CEL}) described in the electrical characteristics table. Soft-start circuit operates, and after the certain time, the reference voltage inside the IC (V_{REF}) is rising gradually up to the constant value.

![Soft-start Time Diagram](image)

Soft-start time is the time interval from soft start circuit starting point to the reference voltage level reaching point up to this constant level.

Soft start time is not always equal to the turn-on speed of DC/DC converter. The power supply capacity for this IC, load current, inductance and capacitance values affect the turn-on speed.

In the case of starting with power supply

In the case of starting with power supply, when the input voltage (V_{IN}) is larger than UVLO released voltage (V_{UVLO2}), soft start circuit operates, and after that, the same explanation above is applied to the operation.

Soft-start time is the time interval from soft start circuit starting point to the reference voltage level reaching point up to this constant level.

![Soft-start Time Diagram](image)

*Turn-on speed is affected by next conditions;
(a) Input Voltage (V_{IN}) rising speed depending on the power supplier to the IC and input capacitor C_{IN}.
(b) Output Capacitor C_{OUT} value and load current value.*
(2) Under Voltage Lockout (UVLO) Circuit

The step-down DC/DC converter stops and ON duty becomes 100%, if input voltage \((V_{IN}) \) becomes less than the set output voltage \((Set \ V_{OUT}) \), the output voltage \((V_{OUT}) \) gradually drops according to the input voltage \((V_{IN}) \).

If the input voltage drops more and becomes less than UVLO detector threshold \((V_{UVLO1}) \), the under voltage lockout circuit (UVLO) operates, the IC internal reference voltage \((V_{REF}) \) stops, switching transistors turn off and the output voltage drops according to the load and output capacitor \(C_{OUT} \) value.

To restart the normal operation, the input voltage \((V_{IN}) \) must be more than the UVLO released voltage \((V_{UVLO2}) \). The timing chart below describes the operation with varying the input voltage \((V_{IN}) \).

*Actually, the waveform of \(V_{OUT} \) at UVLO working and releasing varies depending on the initial voltage of \(C_{OUT} \) and load current situation.
(3) Over Current Protection Circuit, Latch Type Protection Circuit

Over current protection circuit supervises the coil peak current (the current flowing Pch transistor) at each switching cycle, and if the current beyond the Lx current limit (ILxlim), Pch transistor is turned off. The Lx current limit of RP501K is Typ.1.5A.

Further, if the over current status continues equal or longer than protection delay time, or, when the Lx limit current is exceeded even once when the driver operates by duty 100%, a built-in driver is latched in the OFF state and the operation of DC/DC converter stops.

*Lx current limit and protection delay time is affected by self-heating and ambient environment. If the output is short and the input voltage (VIN) is drastically dropped or becomes unstable, the protection operation and delay time may vary.

To release the condition of latch type protection, restart this IC by inputting "L" signal to CE pin, or restart this IC with power-on or make the supply voltage lower than UVLO detector threshold (VUVLO1) level.

The timing chart shown below describes the changing process of input voltage rising, stable operating, operating with large current, reset with CE pin, stable operating, input voltage falling, input voltage recovering, and stable operating.

If too large current flows through the circuit because of short or other reasons, after the delay time of latch type protection a built-in driver is latched in the OFF state and VLx signal will be "L", then output will turn off.

At the point (1), release the latch type protection is realized with CE reset as changed CE signal from "L" to "H".

At the point (2), release the latch type protection is realized with UVLO reset as make the supply voltage lower than UVLO detector threshold (VUVLO1) level.
TYPICAL CHARACTERISTICS

1) Efficiency vs. Output Current
1-1 Input Voltage Dependence

RP501K121x (PWM fixed)

- MODE=0V
- MODE=V_IN

RP501K151x (PWM fixed)

- MODE=0V
- MODE=V_IN

RP501K181x (PWM fixed)

- MODE=0V
- MODE=V_IN

RP501K121x (PWM/VFM mode change)

- MODE=0V
- MODE=V_IN

RP501K151x (PWM/VFM mode change)

- MODE=0V
- MODE=V_IN

RP501K181x (PWM/VFM mode change)

- MODE=0V
- MODE=V_IN
1-2 Temperature Dependence

RP501K121x (PWM fixed)

\[V_{IN} = 3.6V, \text{MODE} = 0V \]

RP501K121x (PWM/VFM mode change)

\[V_{IN} = \text{MODE} = 3.6V \]
2) Output Voltage vs. Output Current
2-1 Input Voltage Dependence

RP501K181x (PWM fixed)
V_{IN}=3.6V, MODE=0V

RP501K181x (PWM/VFM mode change)
V_{IN}=MODE=3.6V

RP501K331x (PWM fixed)
V_{IN}=5.0V, MODE=0V

RP501K331x (PWM/VFM mode change)
V_{IN}=MODE=5.0V
RP501K151x (PWM fixed)

MODE = 0V

<table>
<thead>
<tr>
<th>Output Voltage (V)</th>
<th>Output Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5V</td>
<td>0.1, 1, 10, 100, 1000</td>
</tr>
<tr>
<td>2.9V</td>
<td>0.1, 1, 10, 100, 1000</td>
</tr>
<tr>
<td>3.6V</td>
<td>0.1, 1, 10, 100, 1000</td>
</tr>
<tr>
<td>5.0V</td>
<td>0.1, 1, 10, 100, 1000</td>
</tr>
</tbody>
</table>

RP501K151x (PWM/VFM mode change)

MODE = VIN

<table>
<thead>
<tr>
<th>Output Voltage (V)</th>
<th>Output Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5V</td>
<td>0.1, 1, 10, 100, 1000</td>
</tr>
<tr>
<td>2.9V</td>
<td>0.1, 1, 10, 100, 1000</td>
</tr>
<tr>
<td>3.6V</td>
<td>0.1, 1, 10, 100, 1000</td>
</tr>
<tr>
<td>5.0V</td>
<td>0.1, 1, 10, 100, 1000</td>
</tr>
</tbody>
</table>

RP501K181x (PWM fixed)

MODE = 0V

<table>
<thead>
<tr>
<th>Output Voltage (V)</th>
<th>Output Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5V</td>
<td>0.1, 1, 10, 100, 1000</td>
</tr>
<tr>
<td>2.9V</td>
<td>0.1, 1, 10, 100, 1000</td>
</tr>
<tr>
<td>3.6V</td>
<td>0.1, 1, 10, 100, 1000</td>
</tr>
<tr>
<td>5.0V</td>
<td>0.1, 1, 10, 100, 1000</td>
</tr>
</tbody>
</table>

RP501K181x (PWM/VFM mode change)

MODE = VIN

<table>
<thead>
<tr>
<th>Output Voltage (V)</th>
<th>Output Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5V</td>
<td>0.1, 1, 10, 100, 1000</td>
</tr>
<tr>
<td>2.9V</td>
<td>0.1, 1, 10, 100, 1000</td>
</tr>
<tr>
<td>3.6V</td>
<td>0.1, 1, 10, 100, 1000</td>
</tr>
<tr>
<td>5.0V</td>
<td>0.1, 1, 10, 100, 1000</td>
</tr>
</tbody>
</table>

RP501K331x (PWM fixed)

MODE = 0V

<table>
<thead>
<tr>
<th>Output Voltage (V)</th>
<th>Output Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3V</td>
<td>0.1, 1, 10, 100, 1000</td>
</tr>
<tr>
<td>5.0V</td>
<td>0.1, 1, 10, 100, 1000</td>
</tr>
</tbody>
</table>

RP501K331x (PWM/VFM mode change)

MODE = VIN

<table>
<thead>
<tr>
<th>Output Voltage (V)</th>
<th>Output Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3V</td>
<td>0.1, 1, 10, 100, 1000</td>
</tr>
<tr>
<td>5.0V</td>
<td>0.1, 1, 10, 100, 1000</td>
</tr>
</tbody>
</table>
2-2 Temperature Dependence

RP501K121x (PWM fixed)

\[V_{IN} = 3.6V, \text{MODE}=0V \]

RP501K121x (PWM/VFM mode change)

\[V_{IN} = \text{MODE}=3.6V \]

RP501K151x (PWM fixed)

\[V_{IN} = 3.6V, \text{MODE}=0V \]

RP501K151x (PWM/VFM mode change)

\[V_{IN} = \text{MODE}=3.6V \]

RP501K181x (PWM fixed)

\[V_{IN} = 3.6V, \text{MODE}=0V \]

RP501K181x (PWM/VFM mode change)

\[V_{IN} = \text{MODE}=3.6V \]
3) Output Voltage vs. Input Voltage

RP501K331x (PWM fixed)

- VIN=5.0V, MODE=0V

RP501K331x (PWM/VFM mode change)

- VIN=MODE=5.0V

RP501K121x (PWM fixed)

- MODE=0V

RP501K121x (PWM/VFM mode change)

- MODE=VIN, IOUT=1mA

RP501K151x (PWM fixed)

- MODE=0V

RP501K151x (PWM/VFM mode change)

- MODE=VIN, IOUT=1mA
RP501K

RP501K181x (PWM fixed)
MODE = 0V

MODE = V

IN, IOUT = 1mA

Input Voltage (V)

Output Voltage (V)

1.78
1.79
1.80
1.81
1.82
2.5 3.5 4.5 5.5

1mA

Output Voltage vs. Temperature

RP501K121x (PWM fixed)

VIN = 3.6V, MODE = 0V, IOUT = 500mA

Output Voltage (V)

1.185
1.190
1.195
1.200
1.205
1.210
1.215
-50 0 50 100 Temperature (°C)

4) Output Voltage vs. Temperature

RP501K181x (PWM/VFM mode change)

MODE = VIN, IOUT = 1mA

Output Voltage (V)

1.81
1.80
1.79
1.78
1.77
2.5 3.5 4.5 5.5

Output Voltage vs. Temperature

RP501K331x (PWM fixed)

MODE = 0V

MODE = VIN, IOUT = 1mA

Output Voltage (V)

3.30
3.32
3.34
3.28
3.26
3.0 3.5 4.0 4.5 5.0 5.5

Output Voltage vs. Temperature

RP501K121x (PWM/VFM mode change)

VIN = MODE = 3.6V, IOUT = 1mA

Output Voltage (V)

1.22
1.21
1.20
1.19
1.18
-50 0 50 100 Temperature (°C)
RP501K

RP501K151x (PWM fixed)

\[V_{IN}=3.6\,V, \, \text{MODE}=0\,V, \, I_{OUT}=500\,mA \]

RP501K151x (PWM/VFM mode change)

\[V_{IN}=3.6\,V, \, I_{OUT}=1\,mA \]

RP501K181x (PWM fixed)

\[V_{IN}=3.6\,V, \, \text{MODE}=0\,V, \, I_{OUT}=500\,mA \]

RP501K181x (PWM/VFM mode change)

\[V_{IN}=3.6\,V, \, I_{OUT}=1\,mA \]

RP501K331x (PWM fixed)

\[V_{IN}=5.0\,V, \, \text{MODE}=0\,V, \, I_{OUT}=500\,mA \]

RP501K331x (PWM/VFM mode change)

\[V_{IN}=5.0\,V, \, I_{OUT}=1\,mA \]
5) DC/DC Output Waveform (C_in=10μF, C_out=4.7μF, L=2.2μH)

RP501K121x (PWM fixed)

\[V_{in}=3.6\text{V}, MODE=0\text{V}, R_{out}=10\text{ohm} \]

RP501K121x (PWM/VFM mode change)

\[V_{in}=\text{MODE}=3.6\text{V} , R_{out}=1\text{kohm} \]

RP501K151x (PWM fixed)

\[V_{in}=3.6\text{V}, MODE=0\text{V}, R_{out}=10\text{ohm} \]

RP501K151x (PWM/VFM mode change)

\[V_{in}=\text{MODE}=3.6\text{V} , R_{out}=1\text{kohm} \]

RP501K181x (PWM fixed)

\[V_{in}=3.6\text{V}, MODE=0\text{V}, R_{out}=10\text{ohm} \]

RP501K181x (PWM/VFM mode change)

\[V_{in}=\text{MODE}=3.6\text{V} , R_{out}=1\text{kohm} \]
RP501K331x (PWM fixed)
\(V_{IN}=5.0 \text{V}, \text{MODE}=0 \text{V}, R_{OUT}=10 \text{ohm} \)

RP501K331x (PWM/VFM mode change)
\(V_{IN}=\text{MODE}=5.0 \text{V}, R_{OUT}=1 \text{kohm} \)

6) Supply Current 1, 2 vs. Temperature
RP501Kxx1x
\(V_{IN}=5.5 \text{V} \)

7) Supply Current 1, 2 vs. Input Voltage
RP501Kxx1x
\(V_{IN}=5.5 \text{V} \)

8) Oscillator Frequency vs. Temperature
RP501Kxx1x
\(V_{IN}=3.6 \text{V}, R_{OUT}=10 \text{ohm} \)

9) Oscillator Frequency vs. Input Voltage
RP501Kxx1x
\(V_{IN}=3.6 \text{V}, R_{OUT}=10 \text{ohm} \)
10) Soft-start Time vs. Temperature

RP501Kxx1x

\[V_{\text{IN}} = 3.6 \text{V} \]

\[\text{Soft-start Time (µs)} \]

\[\text{Temperature (°C)} \]

11) Turn on waveform with CE pin (\(C_{\text{IN}} = 10 \mu\text{F}, C_{\text{OUT}} = 4.7 \mu\text{F}, \text{L}=2.2\mu\text{H} \))

RP501K121x

\[V_{\text{IN}} = 3.6\text{V}, R_{\text{OUT}} = 100\text{ohm} \]

RP501K151x

\[V_{\text{IN}} = 3.6\text{V}, R_{\text{OUT}} = 100\text{ohm} \]

RP501K181x

\[V_{\text{IN}} = 3.6\text{V}, R_{\text{OUT}} = 100\text{ohm} \]

RP501K331x

\[V_{\text{IN}} = 5.0\text{V}, R_{\text{OUT}} = 100\text{ohm} \]
12) Turn off waveform with CE pin \((C_{\text{in}}=10\mu\text{F}, C_{\text{out}}=4.7\mu\text{F}, L=2.2\mu\text{H}) \)

- **RP501K121B**

 \[V_{\text{IN}}=3.6\text{V}, R_{\text{OUT}}=1\text{kohm} \]

- **RP501K151B**

 \[V_{\text{IN}}=3.6\text{V}, R_{\text{OUT}}=1\text{kohm} \]

13) UVLO Detector Threshold/ Released Voltage vs. Temperature

- **RP501Kxx1x**

\[\text{Input Voltage(V)} \]

\[\text{Temperature(℃)} \]
14) CE Input vs. Temperature
RP501Kxx1x
Input Voltage Dependence

15) MODE Input vs. Temperature
RP501Kxx1x
Input Voltage Dependence

16) Lx Current Limit vs. Temperature
RP501Kxx1x
Input Voltage Dependence

17) Protection Delay Time VS. Temperature
RP501Kxx1x
Input Voltage Dependence

18) Nch Tr. ON Resistance vs. Temperature
RP501Kxx1x
Input Voltage Dependence, I_{OUT}=100mA

19) Pch Tr. ON Resistance vs. Temperature
RP501Kxx1x
Input Voltage Dependence, I_{OUT}=100mA
20) Load Transient Response (C\textsubscript{IN}=10\textmu F, C\textsubscript{OUT}=4.7\textmu F, L=2.2\textmu H)

RP501K121x

\[V_{\text{IN}}=3.6\text{V}, \text{MODE}=0\text{V}, I_{\text{OUT}}=0.5\text{A to 0.8A} \]

\[V_{\text{IN}}=3.6\text{V}, \text{MODE}=0\text{V}, I_{\text{OUT}}=0.8\text{A to 0.5A} \]

RP501K121x

\[V_{\text{IN}}=3.6\text{V}, \text{MODE}=3.6\text{V}, I_{\text{OUT}}=0.001\text{A to 0.25A} \]

\[V_{\text{IN}}=3.6\text{V}, \text{MODE}=3.6\text{V}, I_{\text{OUT}}=0.25\text{A to 0.001A} \]

RP501K151x

\[V_{\text{IN}}=3.6\text{V}, \text{MODE}=0\text{V}, I_{\text{OUT}}=0.5\text{A to 0.8A} \]

\[V_{\text{IN}}=3.6\text{V}, \text{MODE}=0\text{V}, I_{\text{OUT}}=0.8\text{A to 0.5A} \]
1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under any patent rights, copyrights, trademarks or other intellectual property rights or any other rights. Additionally, these products are not designed for use in applications that require extremely high levels of reliability and safety to prevent damage, injury, or loss to life or property. Users must conduct their own testing to determine suitability for their specific applications.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, space vehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support systems, etc.) should first contact us.

6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
9. WL CSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
10. There can be a variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

Ricoh is Halogen Free

Ricoh ELECTRONIC DEVICES CO., LTD.

https://www.e-devices.ricoh.co.jp/en/