R1232D SERIES
PWM STEP-DOWN DC/DC CONVERTER WITH SYNCHRONOUS RECTIFIER

OUTLINE
The R1232D Series are CMOS-based PWM step-down DC/DC converters with synchronous rectifier, low supply current. As an output capacitor, a 10μF or more ceramic capacitor can be used with the R1232D.

Each of these ICs consists of an oscillator, a PWM control circuit, a voltage reference unit, an error amplifier, a soft-start circuit, protection circuits, a protection against miss operation under low voltage (UVLO), a chip enable circuit, a synchronous rectifier, Nch. driver transistor, and so on. A low ripple, high efficiency step-down DC/DC converter can be easily composed of this IC with only a few kinds of external components, or an inductor and capacitors. (As for R1232D001x type, divider resistors are also necessary.) In terms of the output voltage, it is fixed internally in the R1232Dxx1x types. While in the R1232D001x types, the output voltage is adjustable with external divider resistors.

As protection circuits, current limit circuit which limits peak current of L_x at each clock cycle, and latch type protection circuit exist. The latch protection works if the term of the over-current condition keeps on a certain time. Latch-type protection circuit works to latch an internal driver with keeping it disable. To release the condition of protection, after disable this IC with a chip enable circuit, enable it again, or restart this IC with power-on or make the supply voltage at UVLO detector threshold level or lower than UVLO.

FEATURES
- Two choices of Oscillator Frequency 1MHz, 2.25MHz
 (Small inductors can be used. 4.7μH for 1MHz/2.2μH for 2.25MHz)
- Built-in Driver ON Resistance P-channel 0.2Ω (at VIN=5.0V)
- Built-in Soft-start Function Typ. 1.0ms (fosc=1MHz type)
- Output Voltage 0.9V to 3.3V (R1232Dxx1x Type)
 0.8V to VIN (R1232D001x Type)
- High Accuracy Output Voltage ±2.0%
- Built-in Current Limit Circuit Typ. 1.4A
- Package SON-8 (t=0.9mm)

APPLICATIONS
- Power source for portable equipment such as PDA, DSC, Notebook PC.
- Power source for HDD
SELECTION GUIDE

In the R1232D Series, the output voltage, the oscillator frequency and the output voltage adjustment for the ICs can be selected at the user’s request.

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Package</th>
<th>Quantity per Reel</th>
<th>Pb Free</th>
<th>Halogen Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1232Dxx1*-TR-FE</td>
<td>SON-8</td>
<td>3,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

xx: The output voltage can be designated in the range from 0.9 V(09) to 3.3V(33) in 0.1V steps. (For externally adjustable output voltage type, (00).)

* : The oscillator frequency and the output voltage adjustment are options as follows.

<table>
<thead>
<tr>
<th>Code</th>
<th>Oscillator frequency</th>
<th>Output voltage adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1MHz</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>2.25MHz</td>
<td>No</td>
</tr>
<tr>
<td>C</td>
<td>1MHz</td>
<td>Yes</td>
</tr>
<tr>
<td>D</td>
<td>2.25MHz</td>
<td>Yes</td>
</tr>
</tbody>
</table>
PIN CONFIGURATION

![Top View and Bottom View of SON-8 Package]

PIN DESCRIPTIONS

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Symbol</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PGND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>2</td>
<td>V\text{IN}</td>
<td>Voltage Supply Pin</td>
</tr>
<tr>
<td>3</td>
<td>V\text{DD}</td>
<td>Voltage Supply Pin</td>
</tr>
<tr>
<td>4</td>
<td>CE</td>
<td>Chip Enable Pin (active with "H")</td>
</tr>
<tr>
<td>5</td>
<td>V\text{OUT}/V\text{FB}</td>
<td>Output/Feedback Pin</td>
</tr>
<tr>
<td>6</td>
<td>TEST</td>
<td>Test Pin (Forced to the GND level.)</td>
</tr>
<tr>
<td>7</td>
<td>AGND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>8</td>
<td>L\text{x}</td>
<td>Lx Switching Pin (CMOS Output)</td>
</tr>
</tbody>
</table>

* Tab is GND level. (They are connected to the reverse side of this IC.) The tab is better to be connected to the GND, but leaving it open is also acceptable.
ABSOLUTE MAXIMUM RATINGS

(AGND=PGND=0V)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>V\text{IN} Supply Voltage</td>
<td>−0.3 to 6.5</td>
<td>V</td>
</tr>
<tr>
<td>VDD</td>
<td>V\text{DD} Pin Voltage</td>
<td>−0.3 to 6.5</td>
<td>V</td>
</tr>
<tr>
<td>VLX</td>
<td>Lx Pin Voltage</td>
<td>−0.3 to V\text{IN} + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>VCE</td>
<td>CE Pin Input Voltage</td>
<td>−0.3 to V\text{IN} + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>V\text{TEST}</td>
<td>TEST Pin Input Voltage</td>
<td>−0.3 to V\text{IN} + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>V\text{OUT/VFB}</td>
<td>V\text{OUT/VFB} Pin Input Voltage</td>
<td>−0.3 to V\text{IN} + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>I\text{LX}</td>
<td>Lx Pin Output Current</td>
<td>±1.5</td>
<td>V</td>
</tr>
<tr>
<td>PD</td>
<td>Power Dissipation (SON-8)*</td>
<td>480</td>
<td>mW</td>
</tr>
<tr>
<td>Ta</td>
<td>Operating Temperature Range</td>
<td>−40 to 85</td>
<td>°C</td>
</tr>
<tr>
<td>Tstg</td>
<td>Storage Temperature Range</td>
<td>−55 to 125</td>
<td>°C</td>
</tr>
</tbody>
</table>

*) For Power Dissipation, please refer to PACKAGE INFORMATION.

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.
ELECTRICAL CHARACTERISTICS

- **R1232DxxxA/C**

 \[Ta = 25^\circ C \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin</td>
<td>Operating Input Voltage</td>
<td>(V_{IN}) = V_{CE} = 5.0V, (I_{OUT}) = 10mA</td>
<td>2.6</td>
<td>5.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Vout</td>
<td>Step-down Output Voltage</td>
<td>(V_{IN} = V_{OUT} = 5.0V)</td>
<td>0.980</td>
<td>1.020</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VFB</td>
<td>Feedback Voltage</td>
<td>R1232D001C</td>
<td>0.784</td>
<td>0.800</td>
<td>0.816</td>
<td>V</td>
</tr>
<tr>
<td>(\Delta V_{OUT}/\Delta Ta)</td>
<td>Step-down Output Voltage Temperature Coefficient</td>
<td>(-40^\circ C \leq Ta \leq 85^\circ C)</td>
<td>±150</td>
<td></td>
<td></td>
<td>ppm/(^\circ C)</td>
</tr>
<tr>
<td>fosc</td>
<td>Oscillator Frequency</td>
<td>(V_{IN} = V_{CE} = V_{SET} + 1.5V)</td>
<td>0.75</td>
<td>1.00</td>
<td>1.25</td>
<td>MHz</td>
</tr>
<tr>
<td>Ido</td>
<td>Supply Current</td>
<td>(V_{IN} = V_{CE} = 5.5V, V_{OUT(VFB)} = 5.5V)</td>
<td>70</td>
<td>140</td>
<td>190</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>Istandby</td>
<td>Standby Current</td>
<td>(V_{CE} = V_{OUT(VFB)} = 0V, V_{IN} = 5.5V)</td>
<td>0.0</td>
<td>5.0</td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>ILXleak</td>
<td>LX Leakage Current</td>
<td>(V_{IN} = 5.5V, V_{CE} = 0V)</td>
<td>-5.0</td>
<td>0.0</td>
<td>5.0</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>RONP</td>
<td>ON Resistance of Pch Transistor</td>
<td>(V_{IN} = 5.0V, I_{LX} = 200mA)</td>
<td>0.20</td>
<td>0.35</td>
<td></td>
<td>(\Omega)</td>
</tr>
<tr>
<td>RONN</td>
<td>ON Resistance of Nch Transistor</td>
<td>(V_{IN} = 5.0V, I_{LX} = 200mA)</td>
<td>0.20</td>
<td>0.35</td>
<td></td>
<td>(\Omega)</td>
</tr>
<tr>
<td>Maxduty</td>
<td>Oscillator Maximum Duty Cycle</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>tstart</td>
<td>Soft-start Time</td>
<td>(V_{IN} = V_{CE} = 5.0V,) at no load</td>
<td>0.5</td>
<td>1.0</td>
<td>1.4</td>
<td>ms</td>
</tr>
<tr>
<td>tprot</td>
<td>Protection Delay Time</td>
<td>(V_{IN} = V_{CE} = 5.0V)</td>
<td>0.1</td>
<td>2.0</td>
<td>10.0</td>
<td>ms</td>
</tr>
<tr>
<td>ILXlimit</td>
<td>Lx Current Limit</td>
<td>(V_{IN} = V_{CE} = 5.0V)</td>
<td>1.0</td>
<td>1.4</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>VUVLO1</td>
<td>UVLO Detector Threshold</td>
<td>(V_{IN} = V_{CE} = 2.6V -> 1.5V)</td>
<td>2.10</td>
<td>2.25</td>
<td>2.40</td>
<td>V</td>
</tr>
<tr>
<td>VUVLO2</td>
<td>UVLO Released Voltage</td>
<td>(V_{IN} = V_{CE} = 1.5V -> 2.6V)</td>
<td>2.20</td>
<td>2.50</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ICE</td>
<td>CE Input Current</td>
<td>(V_{IN} = 5.5V, V_{CE} = 5.5V or 0V)</td>
<td>-0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>IVOUT (IVFB)</td>
<td>VOUT/IVFB Leakage Current</td>
<td>(V_{IN} = 5.5V, V_{CE} = 0V, V_{OUT(VFB)} = 5.5V or 0V)</td>
<td>-0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>VCEH</td>
<td>CE "H" Input Voltage</td>
<td>(V_{IN} = 5.5V)</td>
<td>1.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VCEL</td>
<td>CE "L" Input Voltage</td>
<td>(V_{IN} = 3.0V)</td>
<td>0.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Operating Input Voltage</td>
<td></td>
<td>2.6</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>Step-down Output Voltage</td>
<td>$V_{IN}=V_{CE}=5.0V, I_{OUT}=10mA$</td>
<td>$\times0.980$</td>
<td>$\times1.020$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{FB}</td>
<td>Feedback Voltage</td>
<td>R1232D001D</td>
<td>0.784</td>
<td>0.800</td>
<td>0.816</td>
<td>V</td>
</tr>
<tr>
<td>$\Delta V_{OUT}/\Delta T_a$</td>
<td>Step-down Output Voltage Temperature Coefficient</td>
<td>$-40°C \leq T_a \leq 85°C$</td>
<td>±150</td>
<td>ppm/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{osc}</td>
<td>Oscillator Frequency</td>
<td>$V_{IN}=V_{CE}=V_{SET}+1.5V$</td>
<td>1.91</td>
<td>2.25</td>
<td>2.58</td>
<td>MHz</td>
</tr>
<tr>
<td>I_{SD}</td>
<td>Supply Current</td>
<td>$V_{IN}=V_{CE}=5.5V, V_{OUT(VFB)}=5.5V$</td>
<td>170</td>
<td>240</td>
<td>310</td>
<td>μA</td>
</tr>
<tr>
<td>$I_{standby}$</td>
<td>Standby Current</td>
<td>$V_{CE}=V_{OUT(VFB)}=0V, V_{IN}=5.5V$</td>
<td>0.0</td>
<td>5.0</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{LXleak}</td>
<td>LX Leakage Current</td>
<td>$V_{IN}=5.5V, V_{CE}=0V, V_{LX}=5.5V$ or 0V</td>
<td>−5.0</td>
<td>0.0</td>
<td>5.0</td>
<td>μA</td>
</tr>
<tr>
<td>R_{ONP}</td>
<td>ON Resistance of Pch Transistor</td>
<td>$V_{IN}=5.0V, I_{LX}=200mA$</td>
<td>0.20</td>
<td>0.35</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>R_{ONN}</td>
<td>ON Resistance of Nch Transistor</td>
<td>$V_{IN}=5.0V, I_{LX}=200mA$</td>
<td>0.20</td>
<td>0.35</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>Maxduty</td>
<td>Oscillator Maximum Duty Cycle</td>
<td></td>
<td>100</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{start}</td>
<td>Soft-start Time</td>
<td>$V_{IN}=V_{CE}=5.0V$, at no load</td>
<td>0.15</td>
<td>0.4</td>
<td>0.7</td>
<td>ms</td>
</tr>
<tr>
<td>t_{prot}</td>
<td>Protection Delay Time</td>
<td>$V_{IN}=V_{CE}=5.0V$</td>
<td>0.1</td>
<td>2.0</td>
<td>10.0</td>
<td>ms</td>
</tr>
<tr>
<td>$I_{LXlimit}$</td>
<td>LX Current Limit</td>
<td>$V_{IN}=V_{CE}=5.0V$</td>
<td>1.0</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{UVLO1}</td>
<td>UVLO Detector Threshold</td>
<td>$V_{IN}=V_{CE}=2.6V \rightarrow 1.5V$</td>
<td>2.10</td>
<td>2.25</td>
<td>2.40</td>
<td>V</td>
</tr>
<tr>
<td>V_{UVLO2}</td>
<td>UVLO Released Voltage</td>
<td>$V_{IN}=V_{CE}=1.5V \rightarrow 2.6V$</td>
<td>2.20</td>
<td>$V_{UVLO1}+0.10$</td>
<td>2.50</td>
<td>V</td>
</tr>
<tr>
<td>I_{CE}</td>
<td>CE Input Current</td>
<td>$V_{IN}=5.5V, V_{CE}=5.5V/0V$</td>
<td>−0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>μA</td>
</tr>
<tr>
<td>$I_{VOUT(VFB)}$</td>
<td>VOUT/VFB Leakage Current</td>
<td>$V_{OUT}=5.5V, V_{CE}=0V, V_{OUT(VFB)}=5.5V$ or 0V</td>
<td>−0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>μA</td>
</tr>
<tr>
<td>V_{CCH}</td>
<td>CE "H" Input Voltage</td>
<td>$V_{IN}=5.5V$</td>
<td>1.5</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{CEL}</td>
<td>CE "L" Input Voltage</td>
<td>$V_{IN}=3.0V$</td>
<td>0.3</td>
<td></td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed so that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.
TEST CIRCUIT

Test Circuit for Input Current and Leakage Current

Test Circuit for Input Voltage and UVLO voltage

Test Circuit for Output Voltage, Oscillator Frequency, Soft-Starting Time

Test Circuit for Supply Current and Standby Current

Test Circuit for ON resistance of Lx, Limit Current, Delay Time of Protection Circuit
TYPICAL APPLICATION AND TECHNICAL NOTES

• Fixed Output Voltage Type

• Adjustable Output Type

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{IN}</td>
<td>10μF C2012JB0J106MT (TDK), 10μF CM21B106M06AB (Kyocera)</td>
</tr>
<tr>
<td>C_{OUT}</td>
<td>10μF C2012JB0J106MT (TDK), 10μF CM21B106M06AB (Kyocera)</td>
</tr>
<tr>
<td>L</td>
<td>4.7μH/2.7μH VLP5610-4R7MR90, VLP5610-2R7M1R0 (TDK) *2.2μH is also suitable for B/D version.</td>
</tr>
</tbody>
</table>

In terms of setting R1, R2, Cb, refer to the technical notes.
When you use these ICs, consider the following issues:

- Input the same voltage into power supply pins, \(V_{IN} \) and \(V_{DD} \). Set the same level as AGND and PGND.
- When you control the CE pin by another power supply, do not make its "H" level more than the voltage level of \(V_{IN} / V_{DD} \) pin.
- Set external components such as an inductor, \(C_{IN} \), \(C_{OUT} \) as close as possible to the IC, in particular, minimize the wiring to \(V_{IN} \) pin and PGND pin.
- At stand by mode, \((CE=\text{"L"})\), the LX output is Hi-Z, or both P-channel transistor and N-channel transistor of LX pin turn off.
- Set the "Test pin" to the GND. Do not make the test pin voltage as floating or other voltage.
- Reinforce the \(V_{IN} \), PGND, and \(V_{OUT} \) lines sufficiently. Large switching current may flow in these lines. If the impedance of \(V_{IN} \) and PGND lines is too large, the internal voltage level in this IC may shift caused by the switching current, and the operation might be unstable.
- Over current protection circuit supervises the inductor peak current (the current flowing Pch transistor) at all each switching cycle, and if the current beyond the Lx current limit, Pch transistor is turned off. Further, if the over current status continues equal or longer than protection delay time, or when the Lx limit current is exceeded even once when the driver operates by duty 100%, Pch transistor is latched in the OFF state and the operation of DC/DC converter stops.

The performance of power source circuits using these ICs extremely depends upon the peripheral circuits. Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their respected rated values.
OPERATION of step-down DC/DC converter and Output Current

The step-down DC/DC converter charges energy in the inductor when Lx transistor is ON, and discharges the energy from the inductor when Lx transistor is OFF and controls with less energy loss, so that a lower output voltage than the input voltage is obtained. The operation will be explained with reference to the following diagrams:

Step 1: P-channel Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment, IL increases from Ilmin (=0) to reach ILmax in proportion to the on-time period (ton) of P-channel Tr.

Step 2: When P-channel Tr. turns off, Synchronous rectifier N-channel Tr. turns on in order that L maintains IL at ILmax, and current IL (=i2) flows.

Step 3: IL (=i2) decreases gradually and reaches IL=ILmin=0 after a time period of topen, and N-channel Tr. turns off. Provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff time is not enough. In this case, IL value increases from this ILmin (>0).

In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with the oscillator frequency (fosc) being maintained constant.

- Continuous Conduction Mode

The maximum value (ILmax) and the minimum value (ILmin) of the current flowing through the inductor are the same as those when P-channel Tr. turns on and off.

The difference between ILmax and ILmin, which is represented by ΔI;

\[\Delta I = IL_{max} - IL_{min} = \frac{V_{OUT} \times \text{topen}}{L} = \frac{(V_{IN} - V_{OUT}) \times \text{ton}}{L} \].. Equation 1

Where, \(t = 1/fosc = \text{ton} + \text{toff} \)

\[\text{duty} \% = \frac{\text{ton}}{t} \times 100 = \frac{\text{ton} \times fosc}{100} \]

\(\text{topen} \leq \text{toff} \)

In Equation 1, \(V_{OUT} \times \text{topen}/L \) and \((V_{IN} - V_{OUT}) \times \text{ton}/L \) are respectively shown the change of the current at ON, and the change of the current at OFF.

Even if the output current (I_{OUT}) is, topen < toff as illustrated in the above diagram is not realized with this IC. At least, topen is equal toff (topen=toff), and when I_{OUT} is further increased, ILmin becomes larger than zero (ILmin>0). The mode is referred to as the continuous mode.
In the continuous mode, when Equation 1 is solved for \(t_{on}\) and assumed that the solution is \(t_{onc}\)

\[
\text{tonc} = t \times \frac{V_{OUT}}{V_{IN}}
\]

..............................Equation 2

When the \(t_{on} = t_{onc}\), the mode is the continuous mode.

OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS

When P-channel Tr. of LX is ON:

(Wherein, Ripple Current P-P value is described as \(I_{RP}\), ON resistance of P-channel Tr. and N-channel Tr. of LX are respectively described as \(R_{ONP}\) and \(R_{ONN}\), and the DC resistor of the inductor is described as \(R_{L}\).

\[
V_{IN} = V_{OUT} + (R_{ONP} + R_{L}) \times I_{OUT} + L \times I_{RP}/t_{on}
\]

..............................Equation 3

When P-channel Tr. of LX is "OFF"(N-channel Tr. is "ON"):

\[
L \times I_{RP}/t_{off} = V_{F} + V_{OUT} + R_{ONN} \times I_{OUT}
\]

..............................Equation 4

Put Equation 4 to Equation 3 and solve for ON duty of P-channel transistor, \(D_{ON}\)\(=t_{on}/(t_{off}+t_{on})\),

\[
D_{ON} = \frac{(V_{OUT} - R_{ONN} \times I_{OUT} + R_{L} \times I_{OUT})}{(V_{IN} + R_{ONN} \times I_{OUT} - R_{ONP} \times I_{OUT})}
\]

..............................Equation 5

Ripple Current is as follows;

\[
I_{RP} = \frac{(V_{IN} - V_{OUT} - R_{ONP} \times I_{OUT} - R_{L} \times I_{OUT})}{D_{ON}/f_{osc}L}
\]

..............................Equation 6

wherein, peak current that flows through \(L\), and LX Tr. is as follows;

\[
I_{L_{max}} = I_{OUT} + I_{RP}/2
\]

..............................Equation 7

Consider \(I_{L_{max}}\), condition of input and output and select external components.

★The above explanation is directed to the calculation in an ideal case in continuous mode.
How to Adjust Output Voltage and about Phase Compensation

As for Adjustable Output type, feedback pin (V\textsubscript{FB}) voltage is controlled to maintain 0.8V. Output Voltage, \(V_{\text{OUT}} \) is as following equation;

\[
V_{\text{OUT}} = \frac{V_{\text{FB}}(R_1+R_2)}{R_2}
\]

Thus, with changing the value of \(R_1 \) and \(R_2 \), output voltage can be set in the specified range.

In the DC/DC converter, with the load current and external components such as L and C, phase might be behind 180 degree. In this case, the phase margin of the system will be less and stability will be worse. To prevent this, phase margin should be secured with proceeding the phase. A pole is formed with external components L and C\textsubscript{OUT}.

\[
f_{\text{pole}} \approx \frac{1}{2\pi \sqrt{LC_{\text{OUT}}}}
\]

A zero (signal back to zero) is formed with \(R_1 \) and C\textsubscript{b}.

\[
f_{\text{zero}} \approx \frac{1}{(2\pi \times R_1 \times C_b)}
\]

First, choose the appropriate value of \(R_1 \), \(R_2 \) and C\textsubscript{b}.

Set \(R_1+R_2 \) value 100k\(\Omega \) or less.

For example, if \(L=4.7\mu\text{H} \), \(C_{\text{OUT}}=10\mu\text{F} \), the cut off frequency of the pole is approximately 23kHz. To make the cut off frequency of the zero by \(R_1 \), \(R_2 \), and C\textsubscript{b} be higher than 23kHz, set \(R_1=33k\Omega \) and \(C_b=100\text{pF} \). If \(V_{\text{OUT}} \) is set at 2.0V, \(R_2=22k\Omega \) is appropriate.
External Components

1. Inductor
 Select an inductor that peak current does not exceed $I_{L\text{max}}$. If larger current than allowable current flows, magnetic saturation occurs and makes transform efficiency be worse.

 Supposed that the load current is at the same, the smaller value of L is used, the larger the ripple current is.

 Provided that the allowable current is large in that case and DC current is small, therefore, for large output current, efficiency is better than using an inductor with a large value of L and vice versa.

2. Capacitor
 As for C_{IN}, use a capacitor with low ESR (Equivalent Series Resistance) Ceramic type of a capacity at least $10 \mu F$ for stable operation.

 C_{OUT} can reduce ripple of the output voltage, therefore as much as $10 \mu F$ ceramic type is recommended.

TIMING CHART

The timing chart as shown above describes the waveforms starting from the IC is enabled with CE and latched with protection. During the soft-start time, until the level is rising up to the internal soft-start set voltage, the duty cycle of L_x is gradually wider and wider to prevent the over-shoot of the voltage. During the term, the output of amplifier is "H". After the output voltage reaches the set output voltage, they are balanced well. Herein, if the output pin would be short circuit, the output of amplifier would become "H" again, and the condition would continue for 2.0ms (Typ.), or the L_x limit current is exceeded even once when the driver operates by duty 100%, latch circuit would work and the output of L_x would be latched with "OFF". (Output ="High-Z")

If the output short is released before the latch circuit works (within 2ms after output shorted), the output of amplifier is balanced in the stable state again.

Once the IC is latched, to release the protection, input "L" with CE pin, or make the supply voltage at UVLO level or less.
TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current (C_{IN} = 10\mu F, C_{OUT} = 10\mu F)

![Graphs showing output voltage vs. output current for R1232D121A and R1232D331A with VIN = 5.0V.]

2) Efficiency vs. Output Current (C_{IN} = 10\mu F, C_{OUT} = 10\mu F)

![Graphs showing efficiency vs. output current for R1232D121A and R1232D331A with VIN = 3.3V and 5.0V.]

RICOH
3) Output Waveform

R1232D121A

\[V_{IN}=5.0V, \ I_{OUT}=600mA \]

R1232D121B

\[V_{IN}=5.0V, \ I_{OUT}=600mA \]

R1232D331A

\[V_{IN}=5.0V, \ I_{OUT}=600mA \]

R1232D331B

\[V_{IN}=5.0V, \ I_{OUT}=600mA \]
4) Load Transient Response

R1232D121A

- $V_{IN}=5.0\,\text{V}$
- Output Current $10\,\text{mA} \rightarrow 600\,\text{mA}$

R1232D331A

- $V_{IN}=5.0\,\text{V}$
- Output Current $600\,\text{mA} \rightarrow 10\,\text{mA}$

5) Output Voltage vs. Input Voltage

R1232D121A

- $I_{OUT}=600\,\text{mA}$

R1232D331A

- $I_{OUT}=600\,\text{mA}$
6) Oscillator Frequency vs. Input Voltage

R1232D121A

- **I_{out}=600mA**

![Graph of Oscillator Frequency vs. Input Voltage for R1232D121A](image)

R1232D121B

- **I_{out}=600mA**

![Graph of Oscillator Frequency vs. Input Voltage for R1232D121B](image)

7) Lx Transistor On Resistance vs. Input Voltage

- **Switching Tr. Pch on Resistance**

- **Synchronous Rectifier Tr. Nch on Resistance**

![Graph of Lx Transistor On Resistance vs. Input Voltage](image)

8) Turn-on speed by CE pin

R1232D121A

- **V_{in}=5.0V, L=4.7\mu H R_{load}=0\Omega**

![Graph of Turn-on speed by CE pin for R1232D121A](image)

R1232D121A

- **V_{in}=5.0V, L=4.7\mu H R_{load}=12\Omega**

![Graph of Turn-on speed by CE pin for R1232D121A](image)
9) Output Voltage vs. Temperature

\[V_{\text{IN}} = 5.0 \text{V}, \ L = 2.7 \mu \text{H}, \ R_{\text{load}} = 0 \Omega \]

\[V_{\text{IN}} = 5.0 \text{V}, \ L = 2.7 \mu \text{H}, \ R_{\text{load}} = 33 \Omega \]

10) Oscillator Frequency vs. Temperature

\[V_{\text{IN}} = 5.0 \text{V} \]
11) Supply Current vs. Temperature

R1232D121A

![Supply Current vs. Temperature Graph](image)

R1232D331B

![Supply Current vs. Temperature Graph](image)

12) Soft-start time vs. Temperature

R1232D121A

![Soft-start time vs. Temperature Graph](image)

R1232D331B

![Soft-start time vs. Temperature Graph](image)

13) UVLO Voltage vs. Temperature

R1232D121A

![UVLO Voltage vs. Temperature Graph](image)

R1232D121A

![UVLO Voltage vs. Temperature Graph](image)
14) CE Input Voltage vs. Temperature

R1232D121A

VIN=5.0V, CE=H Threshold

15) TEST Input Voltage vs. Temperature

R1232D121A

Vin=5.0V

16) Lx Transistor On Resistance vs. Temperature

Driver Tr. Pch ON Resistance

Rectifier Tr. Nch ON Resistance

VIN=5.0V
17) Current Limit vs. Temperature

R1232D121A

![Graph A](image1)

R1232D331B

![Graph B](image2)

VIN=5.0V

-1.80 ≤ Current Limit ILXlimit(A) ≤ -0.80

Temperature Topt(°C)

-40 35 -15 10 60 85

18) Protection Delay Time vs. Temperatures

R1232D121A

![Graph C](image3)

R1232D331B

![Graph D](image4)

VIN=5.0V

0.0 ≤ Protection Delay Time tprot(ms) ≤ 10.0

Temperature Topt(°C)

-40 35 -15 10 60 85
1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh’s or any third party’s intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a Ricoh product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automobile and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundency feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
9. WL CSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.