OUTLINE

The R1214Z is a low supply current PWM/ VFM step-up DC/DC converter. Internally, the device consists of an
Nch MOSFET driver, an oscillator, a PWM comparator, a voltage reference unit, an error amplifier, an
overcurrent protection circuit, an under voltage lockout circuit (UVLO), an overvoltage protection circuit (LxOVP,
LEDOVP), a thermal shutdown protection circuit and 2-channel current drivers for white LEDs.

The R1214Z requires minimal external component count. By simply using an inductor, a resistor, capacitors
and a diode, the white LEDs can be driven with constant current and high efficiency. The LED current can be
determined by the value of current setting resistor. The brightness of the LEDs can be adjusted quickly by
applying a 200 Hz to 300 kHz PWM signal to the PWM pin.

The R1214Z provides the PWM control or the PWM/VFM auto switching control. The PWM control switches
at fixed frequency rate in low output current in order to reduce noise. Likewise, the PWM/VFM auto switching
control automatically switches from PWM mode to VFM mode in low output current in order to achieve high
efficiency. RICOH’s unique control method can suppress a ripple voltage in the VFM mode, thus the R1214Z
can achieve both low ripple voltage at light load and high efficiency.

The R1214Z provides an overcurrent protection circuit to limit the Lx peak current, an UVLO circuit to prevent
the malfunction of the device at low input voltage, a LxOVP circuit to monitor the excess Lx voltage, a LEDOVP
circuit to monitor the excess LED1-2 voltage and a thermal shutdown protection circuit to detect the
overheating of the device and stops the operation to protect the device from damage.

The R1214Z is offered in a 9-pin WLCSP-9-P1 package.

FEATURES

- Input Voltage Range (Maximum Rating) 2.7 V to 5.5 V (6.5 V)
- Supply Current ... Typ. 500 µA
- Standby Current ... Typ. 0.2 µA, Max. 5 µA
- Overcurrent Protection Circuit Typ. 1.9 A
- Overvoltage Protection (OVP) Circuit Typ. 35 V
- LED1-2 Current Matching Circuit Max. 0.5% (R1214Zx1C/ D, 20 mA)
- Oscillator Frequency Typ. 750 kHz/ 450 kHz
- Maximum Duty Cycle Typ. 96% (R1214Zx11x)
- Nch ON Resistance Typ. 0.25 Ω (VIN = 3.6 V)
- Undervoltage Lockout (UVLO) Circuit Typ. 2.4 V
- Thermal Shutdown Circuit Typ. 150°C
- LED Dimming Control By sending a 200 Hz to 300 kHz PWM signal to the PWM pin
- Package .. WLCSP-9-P1
APPLICATION

- White LED backlight driver for LCD displays for portable equipment
- White LED backlight driver for LCD displays for Smartphones, Tablets and Note PCs

SELECTION GUIDE

The combinations of oscillator frequency, LED voltage and power controlling method are user-selectable options.

Selection Guide

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Package</th>
<th>Quantity per Reel</th>
<th>Pb Free</th>
<th>Halogen Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1214Z(2)(z)-E2-F</td>
<td>WLCSP-9-P1</td>
<td>5,000 pcs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

2(y)1(z)

<table>
<thead>
<tr>
<th>(y): Oscillator Frequency</th>
<th>(z): LED Voltage (I_LED = 20 mA)</th>
<th>(z): Power Controlling Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>211A 450 kHz</td>
<td>320 mV</td>
<td>PWM/VFM Auto Switching</td>
</tr>
<tr>
<td>221A 750 kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>211B 450 kHz</td>
<td>320 mV</td>
<td>PWM</td>
</tr>
<tr>
<td>211C 450 kHz</td>
<td>600 mV</td>
<td>PWM/VFM Auto Switching</td>
</tr>
<tr>
<td>221C 750 kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>211D 450 kHz</td>
<td>600 mV</td>
<td>PWM</td>
</tr>
</tbody>
</table>
PIN DESCRIPTION

WLCSP-9-P1 Pin Configurations

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>ISET</td>
<td>LED Current Control Pin</td>
</tr>
<tr>
<td>A2</td>
<td>LED1</td>
<td>LED Current Supply Pin 1</td>
</tr>
<tr>
<td>A3</td>
<td>LED2</td>
<td>LED Current Supply Pin 2</td>
</tr>
<tr>
<td>B1</td>
<td>PWM</td>
<td>PWM Dimming Control Input Pin</td>
</tr>
<tr>
<td>B2</td>
<td>COMP</td>
<td>Error Amplifier Output Pin</td>
</tr>
<tr>
<td>B3</td>
<td>GND</td>
<td>Ground Pin</td>
</tr>
<tr>
<td>C1</td>
<td>CE</td>
<td>Chip Enable Pin, Active-high</td>
</tr>
<tr>
<td>C2</td>
<td>VIN</td>
<td>Analog Input Voltage Pin</td>
</tr>
<tr>
<td>C3</td>
<td>LX</td>
<td>Switching Pin, Open Drain Output</td>
</tr>
</tbody>
</table>
ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured.

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such ratings by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

(1) Constantly applying a constant-voltage higher than 6.5 V to the Lx pin from the outside may cause the permanent damages to the device.

(2) Refer to POWER DISSIPATION for detailed information.
ELECTRICAL CHARACTERISTICS

The specifications surrounded by \[\text{are over } -40^\circ \text{C} \leq T_a \leq 85^\circ \text{C} \text{and guaranteed by design engineering.} \]

R1214Z Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDD</td>
<td>Supply Current</td>
<td>$V_{IN} = 3.6 \text{ V, no load, non-switching}$</td>
<td>0.5</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Istandby</td>
<td>Standby Current</td>
<td>$V_{IN} = 5.5 \text{ V, } V_{CE} = 0 \text{ V}$</td>
<td>0.2</td>
<td>5.0</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>V_{UVLO1}</td>
<td>UVLO Detector Threshold</td>
<td>V_{IN} falling</td>
<td>2.25</td>
<td>2.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{UVLO2}</td>
<td>UVLO Released Voltage</td>
<td>V_{IN} rising</td>
<td>$V_{UVLO1} + 0.1$</td>
<td>2.65</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{CEH}</td>
<td>CE Input Voltage "H"</td>
<td>$V_{IN} = 5.5 \text{ V}$</td>
<td>1.5</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{CEL}</td>
<td>CE Input Voltage "L"</td>
<td>$V_{IN} = 2.7 \text{ V}$</td>
<td>0.4</td>
<td>0.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>R_{CE}</td>
<td>CE Pull-down Resistance</td>
<td>$V_{IN} = 5.5 \text{ V}$</td>
<td>1200</td>
<td>KΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{PWM}</td>
<td>PWM Pull-down Resistance</td>
<td>$V_{IN} = 5.5 \text{ V}$</td>
<td>1200</td>
<td>KΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{LED}</td>
<td>LED1-2 Current Accuracy</td>
<td>$R_{SET} = 30.1 \text{ k}\Omega$ [\text{ (1 string = 20 mA)}]</td>
<td>R1214Zxx1A/ B</td>
<td>19.6</td>
<td>20</td>
<td>20.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = 3.6 \text{ V}$</td>
<td>R1214Zxx1C/ D</td>
<td>19.7</td>
<td>20</td>
<td>20.3</td>
</tr>
<tr>
<td>I_{LEDM1}</td>
<td>LED1-2 Current Matching Accuracy 1 [\text{ (1 string = 20 mA)}]</td>
<td>$R_{SET} = 30.1 \text{ k}\Omega$ [\text{ PWMduty = 100%}]</td>
<td>R1214Zxx1A/ B</td>
<td>0.2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = 3.6 \text{ V}$ [\text{ $I_{MAX} - I_{Ave}$ (3)}]</td>
<td>R1214Zxx1C/ D</td>
<td>0.1</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>I_{LEDM2}</td>
<td>LED1-2 Current Matching Accuracy 2 [\text{ (1 string = 20 mA)}]</td>
<td>$R_{SET} = 30.1 \text{ k}\Omega$</td>
<td>R1214Zxx1A/ B</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\text{PWMduty = 10% (f_{PWM} = 20 \text{ kHz})}$ [\text{ $I_{MAX} - I_{Ave}$ (3)}]</td>
<td>R1214Zxx1C/ D</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{LEDMAX}</td>
<td>LED1-2 Maximum Current at 100% Dimming Range</td>
<td>$V_{IN} = 3.6 \text{ V}$</td>
<td>40</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{LEDLEAK}$</td>
<td>LED1-2 Leakage Current</td>
<td>$V_{IN} = 5.5 \text{ V, } V_{LED1-2} = 1 \text{ V, } V_{CE} = 0 \text{ V}$</td>
<td>3.0</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{ON}</td>
<td>Nch ON Resistance</td>
<td>$V_{IN} = 3.6 \text{ V, } I_{LX} = 100 \text{ mA}$</td>
<td>0.25</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{LXLEAK}</td>
<td>Lx Leakage Current</td>
<td>$V_{IN} = 5.5 \text{ V, } V_{LX} = 41 \text{ V}$</td>
<td>3.0</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{LXLIM}</td>
<td>Lx Current Limit</td>
<td>$V_{IN} = 3.6 \text{ V}$</td>
<td>1.3</td>
<td>1.9</td>
<td>2.5</td>
<td>A</td>
</tr>
<tr>
<td>V_{LED}</td>
<td>LED1-2 Regulated Voltage</td>
<td>R1214Zxx1A/ B [\text{ (1 string = 20 mA)}], $V_{IN} = 3.6 \text{ V}$</td>
<td>320</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R1214Zxx1C/ D [\text{ (1 string = 20 mA)}], $V_{IN} = 3.6 \text{ V}$</td>
<td>600</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{osc}</td>
<td>Oscillator Frequency</td>
<td>R1214Zxx11x, $V_{IN} = 3.6 \text{ V}$</td>
<td>400</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R1214Zxx21x, $V_{IN} = 3.6 \text{ V}$</td>
<td>675</td>
<td>750</td>
<td>825</td>
<td>kHz</td>
</tr>
</tbody>
</table>

(3) I_{Ave} is the average current of LED1-2.
ELECTRICAL CHARACTERISTICS (continued)

The specifications surrounded by \(\square\) are over \(-40^\circ C \leq T_a \leq 85^\circ C\). and guaranteed by design engineering.

R1214Z Electrical Characteristics \((T_a = 25^\circ C)\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxduty</td>
<td>Maximum Duty Cycle</td>
<td>R1214Zx11x, (V_{IN} = 3.6) V</td>
<td>92</td>
<td>96</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R1214Zx21x, (V_{IN} = 3.6) V</td>
<td>91</td>
<td>94</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>(V_{OVP1})</td>
<td>(V_{\text{LX}}) OVP Detector Threshold</td>
<td>(V_{\text{OUT}}) rising (V_{IN} = 3.6) V R1214Z2x1x</td>
<td>29</td>
<td>35</td>
<td>41</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OVP2})</td>
<td>(V_{\text{LED}}) OVP Detector Threshold</td>
<td>(V_{\text{LED1-2}}) rising, (V_{IN} = 3.6) V</td>
<td>4.3</td>
<td>4.5</td>
<td>4.7</td>
<td>V</td>
</tr>
<tr>
<td>tstart</td>
<td>Soft Start Time</td>
<td>(V_{IN} = 3.6) V</td>
<td>15</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>(T_{TSD})</td>
<td>Thermal Shutdown Temperature</td>
<td>(V_{IN} = 3.6) V</td>
<td>150</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>(T_{TSR})</td>
<td>Thermal Shutdown Release Temperature</td>
<td>(V_{IN} = 3.6) V</td>
<td>125</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

All test items listed under ELECTRICAL CHARACTERISTICS are done under the pulse load condition \((T_j \approx T_a = 25^\circ C)\) except LED1-2 Current max at 100% Dimming Range.
THEORY OF OPERATION

Soft-Start
During start-up, soft-start increases the output voltage (V_{OUT}) by forcibly switching the Lx pin and gradually increasing the Lx current limit (I_{LX,LIM}). If the preset LED current is 1.5 mA or more, soft-start gradually increases the LED current (I_{LED}) until it reaches the preset LED current. If the preset LED current is less than 1.5 mA, soft-start increases I_{LED} until it reaches 1.5 mA, then reduces it to the preset LED current. To minimize the overshoot of I_{LED}, a 1-µF capacitor (C4) can be used.

Overcurrent Protection
If the peak inductor current (I_{Lmax}) exceeds I_{LX,LIM}, overcurrent protection turns the driver off and turns it on in every switching cycle to continually monitor the driver current.

Overvoltage Protection (OVP)
The flow chart below illustrates the functions of LxOVP and LEDOVP. LxOVP protects the device from high voltage due to the disconnection of white LED string. To release the latch-type LxOVP or LEDOVP, set the CE pin low or decrease the Vin pin voltage below the UVLO detector threshold.

Under Voltage Lockout (UVLO)
UVLO stops the device operation to prevent malfunction when the input (Vin) voltage falls below the UVLO detector threshold.
Thermal Shutdown
Thermal shutdown circuit detects overheating of the converter and stops the device operation to protect it from damage. If the junction temperature of the device exceeds the specified temperature, the thermal shutdown stops the device operation and resumes the device operation if the junction temperature decreases below the thermal shutdown release temperature.

Input Signal Sequencing
The timing of turning on or off of LEDs can be controlled by sequencing the input signals. There are two ways of sequencing the input signals:

1. **Sequencing 1. Send a signal to the PWM pin first and then switch the CE pin to high.**
The device shifts from standby mode to active mode to turn the LEDs on.

 ![Sequencing 1 Diagram](image1)

2. **Sequencing 2. Send a signal to the PWM pin while the CE pin is constantly set high.**
The device shifts from standby mode to active mode to turn the LEDs on. If a signal is not sent to the PWM pin more than 50 ms (Max.), the device shifts from active mode to standby mode to turn the LEDs off.

 ![Sequencing 2 Diagram](image2)
LED Dimming Control
The brightness of the LEDs can be adjusted by applying a PWM signal to the PWM pin. The LED current (I_{LED}) can be controlled by the duty of a PWM signal for the PWM pin. The duty range of a PWM signal can be set in a range of 0.4% to 100% when using a 1-µF capacitor (C4) and a 30.1-kΩ feedback resistor (R_{ISET}). The relation between the high-duty of the PWM pin (Hduty) and I_{LED} can be calculated as follows:

$$I_{LED} = Hduty \times I_{LEDSET}$$

The frequency of a PWM signal for dimming the LEDs can be set within the range of 200 Hz to 300 kHz; however, it is recommended that a 20-kHz to 100-kHz frequency be used. In the case of using a less than 20-kHz PWM signal, an increase or decrease in an inductor current (I_L) may generate noise in the audible band. To avoid this, connect a 2.2-µF or more capacitor (C3) between the ISET pin and GND pin. In the case of using a 20-kHz or more PWM signal, C3 is not required. Note that if a PWM signal is changed stepwise, a change in the LED luminance level can be visible as shown in the following figure. To reduce the visible change in the LED luminance level, C3 can also be used.

Reducing the visible change in LED luminance level by using C3

![Graph showing LED luminance level with and without C3](image)

C3 = 0 µF \quad C3 = 2.2 µF

White LED Current Setting
The LED current for each LED string when a PWM signal applied to the PWM pin is Duty = 100% (I_{LEDSET}) can be determined by the value of feedback resistor (R_{ISET}). I_{LEDSET} can be calculated as follows:

$$I_{LEDSET} = 0.0466 \times R_{ISET} / (40 \, k \Omega + R_{ISET})$$

R_{ISET} should be set to 19 kΩ or more. If R_{ISET} with 30.1 kΩ is placed between the ISET and GND pins, I_{LEDSET} will be set to 20 mA.
Operation of Step-Up Dc/Dc Converter And Output Current

The PWM control type of the step-up DC/DC converter has two operation modes characterized by the continuity of inductor current: discontinuous inductor current mode and continuous inductor current mode.

When an Nch transistor is in On-state, the voltage to be applied to the inductor (L) is described as V_{IN}. An increase in the inductor current (I_{L1}) can be written as follows:

$$I_{L1} = \frac{V_{IN} \times t_{on}}{L} \quad \text{Equation 1}$$

In the step-up DC/DC converter circuit, the energy accumulated during the On-state is transferred into the capacitor even in the Off-state. A decrease in the inductor current (I_{L2}) can be written as follows:

$$I_{L2} = \frac{(V_{OUT} - V_{IN}) \times t_{open}}{L} \quad \text{Equation 2}$$
In the PWM control, IL1 and IL2 become continuous when $\text{topen} = \text{toff}$, which is called continuous inductor current mode.

When the device is in continuous inductor current mode and operates in steady-state conditions, the variations of IL1 and IL2 are same:

$$V_{\text{IN}} \times \text{ton} / L = (V_{\text{OUT}} - V_{\text{IN}}) \times \text{toff} / L$$
 \hspace{1cm} \text{Equation 3}

Therefore, the duty cycle in continuous inductor current mode is:

$$\text{duty} \% = \frac{\text{ton}}{(\text{ton} + \text{toff})} = \frac{(V_{\text{OUT}} - V_{\text{IN}})}{V_{\text{OUT}}}$$
 \hspace{1cm} \text{Equation 4}

When $\text{topen} = \text{toff}$, the average of IL1 is:

$$\text{IL1 (Ave.)} = \frac{V_{\text{IN}} \times \text{ton}}{(2 \times L)}$$
 \hspace{1cm} \text{Equation 5}

If the input voltage (V_{IN}) is equal to the output voltage (V_{OUT}), the output current (I_{OUT}) is:

$$I_{\text{OUT}} = \frac{V_{\text{IN}}^2 \times \text{ton}}{(2 \times L \times V_{\text{OUT}})}$$
 \hspace{1cm} \text{Equation 6}

If I_{OUT} is larger than Equation 6, the device switches to continuous inductor current mode.

The peak inductor current (IL_{max}) is:

$$IL_{\text{max}} = \frac{I_{\text{OUT}} \times V_{\text{OUT}}}{V_{\text{IN}}} + \frac{V_{\text{IN}} \times \text{ton}}{(2 \times L)}$$
 \hspace{1cm} \text{Equation 7}

$$IL_{\text{max}} = \frac{I_{\text{OUT}} \times V_{\text{OUT}}}{V_{\text{IN}}} + \frac{V_{\text{IN}} \times T \times (V_{\text{OUT}} - V_{\text{IN}})}{(2 \times L \times V_{\text{OUT}})}$$
 \hspace{1cm} \text{Equation 8}

As a result, IL_{max} becomes larger compared to I_{OUT}. The overcurrent protection circuit operates if the IL_{max} becomes more than the L_x current limit. When considering the input and output conditions or selecting the external components, please pay attention to IL_{max}.

Notes: The above calculations are based on the ideal operation of the device. They do not include the losses caused by the external components or Nch transistor. The actual maximum output current will be 50% to 80% of the above calculation results. Especially, if IL is large or V_{IN} is low, it may cause the switching losses. An approximately 0.8 V forward voltage (V_F) of diode should be added to V_{OUT} in the above calculations.
APPLICATION INFORMATION

Typical Application Circuits

Typical Application: 8 LEDs in series x 2 parallels, 200 Hz to 20 kHz PWM signal

Typical Application: 8 LEDs in series x 2 parallels, 20 kHz to 300 kHz PWM signal
<table>
<thead>
<tr>
<th>L1 (µH)</th>
<th>Product Name</th>
<th>Rated Current (mA)</th>
<th>Inductor Size (mm)</th>
<th>Components No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>R1214Z221x</td>
<td>550</td>
<td>2.5 x 2.0 x 1.0</td>
<td>VLS252010ET-100M</td>
</tr>
<tr>
<td>10</td>
<td>R1214Z211x</td>
<td>620</td>
<td>3.0 x 2.5 x 1.2</td>
<td>VLF302512MT-100M</td>
</tr>
<tr>
<td>10</td>
<td>R1214Z211x</td>
<td>900</td>
<td>4.0 x 3.2 x 1.2</td>
<td>VLF403212MT-100M</td>
</tr>
<tr>
<td>10</td>
<td>R1214Z211x</td>
<td>1320</td>
<td>5.0 x 4.0 x 1.2</td>
<td>VLF504012MT-100M</td>
</tr>
<tr>
<td>22</td>
<td>R1214Z221x</td>
<td>430</td>
<td>3.0 x 2.5 x 1.2</td>
<td>VLF302512MT-220M</td>
</tr>
<tr>
<td>22</td>
<td>R1214Z211x</td>
<td>540</td>
<td>4.0 x 3.2 x 1.2</td>
<td>VLF403212MT-220M</td>
</tr>
<tr>
<td>22</td>
<td>R1214Z211x</td>
<td>890</td>
<td>5.0 x 4.0 x 1.2</td>
<td>VLF504012MT-220M</td>
</tr>
</tbody>
</table>

Recommended Components

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Rated Voltage (V)</th>
<th>Value</th>
<th>Components No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 (CIN)</td>
<td>Ceramic Capacitor</td>
<td>6.3</td>
<td>4.7 µF or more</td>
<td>C1608JB0J475K</td>
</tr>
<tr>
<td>C2 (COUT)</td>
<td>Ceramic Capacitor</td>
<td>50</td>
<td>2.2 µF or more R1214Z211x</td>
<td>C2012X5R1H225K</td>
</tr>
<tr>
<td>C3</td>
<td>Ceramic Capacitor</td>
<td>6.3</td>
<td>2.2 µF or more R1214Z221x</td>
<td>C2012X5R1H105K</td>
</tr>
<tr>
<td>C4</td>
<td>Ceramic Capacitor</td>
<td>6.3</td>
<td>0.1 µF to 1µF</td>
<td>-</td>
</tr>
<tr>
<td>D1</td>
<td>Diode</td>
<td>60</td>
<td>-</td>
<td>CRS12</td>
</tr>
</tbody>
</table>

Cautions in Selecting External Components

Selection of Inductor

The peak inductor current (ILmax) under steady operation can be calculated as follows:

\[
IL_{\text{max}} = 1.25 \times I_{\text{LED}} \times V_{\text{OUT}} / V_{\text{IN}} + 0.5 \times V_{\text{IN}} \times (V_{\text{OUT}} - V_{\text{IN}}) / (L \times V_{\text{OUT}} \times f_{\text{osc}})
\]

When starting up the device or adjusting the brightness of LED lights using the PWM pin, a large transient current may flow into an inductor (L1). ILmax should be equal or smaller than the Lx current limit (ILxLIM) of the device. It is recommended that a 10 µH to 22 µH inductor be used.
Selection of Capacitor
Set a 4.7 µF or more input capacitor (C1) between the VIN and GND pins as close as possible to the pins.
Set a 2.2 µF or more output capacitor (C2) between the VOUT and GND pins for R1214Zx11x.
Set a 1 µF or more output capacitor (C2) between the VOUT and GND pins for R1214Zx21x.
If a PWM input signal is within the range of 200 Hz to 20 kHz, set a 2.2 µF or more capacitor (C3) between the ISET and GND pins. If a PWM input signal is within the range of 20 kHz to 300 kHz, a capacitor (C3) is not required. Set a capacitor (C4) 0.1 µF between the COMP and GND pins.

Selection of SBD (Schottky Barrier Diode)
Choose a diode that has low forward voltage (Vf), low reverse current (Ir), and low parasitic capacitance. SBD is an ideal type of diode for R1214Z since it has low Vf, low Ir, and low parasitic capacitance.

TECHNICAL NOTES
The performance of a power source circuit using this device is highly dependent on a peripheral circuit. A peripheral component or the device mounted on PCB should not exceed a rated voltage, a rated current or a rated power. When designing a peripheral circuit, please be fully aware of the following points.

- Place an input capacitor (C1) between the VIN pin and the GND pin as close as possible. Also, connect the GND pin to the wider plane.
- Make the Lx land pattern as small as possible.
- Make the wirings between the Lx pin, the inductor and the diode as short as possible. Also, connect an output capacitor (C2) as close as possible to the cathode of the diode.
- Place C2 as close as possible to the GND pin.
- Unused LED pin should be connected to GND.
- Figure 1 and Figure 2 show the current pathways of application circuits when MOSFET is turned ON or when MOSFET is turned OFF, respectively. As shown in Figure 1 and Figure 2, the currents flow in the directions of blue or green arrows. The parasitic components, such as impedance, inductance or capacitance, formed in the pathways indicated by the red arrows affect the stability of the system and become the cause of noise. Reduce the parasitic components as much as possible. The current pathways should be made by short and thick wirings.
Reference PCB Layouts

R1214Z (WLCSP-9-P1) PCB Layout

<Topside> <Backside>
TYPICAL CHARACTERISTICS

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

1) Efficiency vs. Output Current
1-1) Efficiency of R1214Z211A with Different Input Voltages
VLF403012-100M/ 6s2p LEDs (V_{OUT} = 16.9 V at 40 mA per 1 String)
VLF403012-220M/ 6s2p LEDs (V_{OUT} = 16.9 V at 40 mA per 1 String)

1-2) Efficiency of R1214Z211A with Different Inductors (V_{OUT} = 28 V at 80 mA)
V_{IN} = 3.6 V/ 6s2p LEDs (V_{OUT} = 16.9 V at 40 mA per 1 String)
V_{IN} = 3.6 V/ 6s2p LEDs (V_{OUT} = 16.9 V at 40 mA per 1 String)
2) PWM Dimming Duty vs. I_{LED} ($R_{\text{SET}} = 30.1 \ \Omega$)

- $V_{\text{IN}} = 3.6 \ \text{V/ 8s2p LEDs}$
- $V_{\text{IN}} = 3.6 \ \text{V/ 8s2p LEDs}$
 - ($f_{\text{PWM}} = 20 \ \text{kHz}$)
 - ($R_{\text{SET}} = 30.1 \ \Omega$)

3) I_{LED} Waveform in the VFM Mode

- $V_{\text{IN}} = 3.6 \ \text{V/ 8s2p LEDs}$
- $V_{\text{IN}} = 3.6 \ \text{V/ 8s2p LEDs}$
 - ($R_{\text{SET}} = 30.1 \ \Omega$)
4) Startup/Shutdown Waveform

- **VIN = 3.6 V/8s2p LEDs**
 - R1214Zxxxx (fPWM = 20 kHz, PWMduty = 50%)
 - (RISET = 30.1 kΩ)
 - R1214Zxxxx (fPWM = 20 kHz, PWMduty = 100%)
 - (RISET = 30.1 kΩ)

- **VIN = 3.6 V/8s2p LEDs**
 - R1214Zxxxx (fPWM = 20 kHz, PWMduty = 50%)
 - (RISET = 30.1 kΩ)
 - R1214Zxxxx (fPWM = 20 kHz, PWMduty = 100%)
 - (RISET = 30.1 kΩ)
5) Load Transient Response

Vin = 3.6 V/ 8s2p LEDs
R1214Z221A (fPWM= 20kHz, PWMduty= 10%→90%)
(Riset = 30.1 kΩ/ Cset = 0 µF)

Vin = 3.6 V/ 8s2p LEDs
R1214Z221A (fPWM= 20kHz, PWMduty= 90%→10%)
(Riset = 30.1 kΩ/ Cset = 0 µF)

Vin = 3.6 V/ 8s2p LEDs
R1214Z221A (fPWM= 20kHz, PWMduty= 10%→90%)
(Riset = 30.1 kΩ/ Cset = 2.0 µF)

Vin = 3.6 V/ 8s2p LEDs
R1214Z221A (fPWM= 20kHz, PWMduty= 90%→10%)
(Riset = 30.1 kΩ/ Cset = 2.0 µF)
6) Electrical Characteristics
6-1) UVLO Voltage vs. Ambient Temperature

6-2) LED Regulated Voltage vs. Ambient Temperature
R1214ZxxxA/B

6-3) LED Current vs. Ambient Temperature
R1214ZxxxA/B
6-4) Nch ON Resistance vs. Ambient Temperature

6-5) Oscillator Frequency vs. Ambient Temperature

6-6) Maxduty vs. Ambient Temperature
6-7) LxOVP Detect Voltage vs. Ambient Temperature

6-8) LEDOVP Detect Voltage vs. Ambient Temperature

6-9) Soft start Time vs. Ambient Temperature

6-10) Lx Limit Current vs. Ambient Temperature
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

Measurement Conditions

<table>
<thead>
<tr>
<th></th>
<th>High Wattage Land Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>Mounting on Board (Wind Velocity = 0 m/s)</td>
</tr>
<tr>
<td>Board Material</td>
<td>Glass Cloth Epoxy Plastic (Four-layers)</td>
</tr>
<tr>
<td>Board Dimensions</td>
<td>76.2 mm × 114.3 mm × 1.6 mm</td>
</tr>
<tr>
<td>Copper Ratio</td>
<td>Outer Layers (First and Fourth Layers): Approx. 60% Inner Layers (Second and Third Layers): 100%</td>
</tr>
</tbody>
</table>

Measurement Result

(Ta = 25°C, Tjmax = 125°C)

<table>
<thead>
<tr>
<th></th>
<th>High Wattage Land Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Dissipation</td>
<td>1190 mW</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>θja = (125 − 25°C) / 1.19 W = 84°C/W</td>
</tr>
</tbody>
</table>

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

![Diagram](image)
WLCSP-9-P1 Package Dimensions (Unit: mm)
Visual Inspection Criteria

<table>
<thead>
<tr>
<th>No.</th>
<th>Inspection Items</th>
<th>Inspection Criteria</th>
<th>Figure</th>
</tr>
</thead>
</table>
| 1 | Package chipping | A ≥ 0.2mm is rejected
B ≥ 0.2mm is rejected
C ≥ 0.2mm is rejected
And, Package chipping to Si surface and to bump is rejected. | |
| 2 | Si surface chipping | A ≥ 0.2mm is rejected
B ≥ 0.2mm is rejected
C ≥ 0.2mm is rejected
But, even if A ≥ 0.2mm, B ≤ 0.1mm is acceptable. | |
| 3 | No bump | No bump is rejected. | |
| 4 | Marking miss | To reject incorrect marking, such as another product name marking or another lot No. marking. | |
| 5 | No marking | To reject no marking on the package. | |
| 6 | Reverse direction of marking | To reject reverse direction of marking character. | |
| 7 | Defective marking | To reject unreadable marking.
(Microscope: X15/ White LED/ Viewed from vertical direction) | |
| 8 | Scratch | To reject unreadable marking character by scratch.
(Microscope: X15/ White LED/ Viewed from vertical direction) | |
| 9 | Stain and Foreign material | To reject unreadable marking character by stain and foreign material.
(Microscope: X15/ White LED/ Viewed from vertical direction) | |
1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.

2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.

3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.

4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh’s or any third party’s intellectual property rights or any other rights.

5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.

6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundant design, fail-safe design.

7. Anti-radiation design is not implemented in the products described in this document.

8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.

9. WL CSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.

10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.

11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH ELECTRONIC DEVICES CO., LTD.

https://www.e-devices.ricoh.co.jp/en/

sales & support offices

Ricoh Electronic Devices Co., Ltd.
Shin-Yokohama Office (International Sales)
2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan
Phone: +81-50-3814-7887 Fax: +81-46-474-0074

Ricoh Americas Holdings, Inc.
975 Campbell Technology Parkway, Suite 200 Campbell, CA 95008, U.S.A.
Phone: +1-408-610-3105

Ricoh Europe (Netherlands) B.V.
Semiconductor Support Centre
Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands
Phone: +31-20-5474-309

Ricoh International B.V. - German Branch
Semiconductor Sales and Support Centre
Obernath Straße 6, 40472 Düsseldorf, Germany
Phone: +49-211 6546-0

Ricoh Electronic Devices Korea Co., Ltd.
3F, Haesung Bldg. 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea
Phone: +82-2-2135-8700 Fax: +82-2-205-1913

Ricoh Electronic Devices Shanghai Co., Ltd.
Room 403, No.2 Building, No.695 Biyao Road, Pu Dong New District, Shanghai 201203, People’s Republic of China
Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

Ricoh Electronic Devices Shanghai Co., Ltd.
Shenzhen Branch
1205, Block D (Long Building), Kingkey 100, Hongbao Road, Luohu District, Shenzhen, China
Phone: +86-755-8346-7600 Ext 225

Ricoh Electronic Devices Co., Ltd.
Taipei office
Room 109, 10F-1, No.51, Hangyang Rd, Taipei City, Taiwan (R.O.C.)
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623