RICOH

R1213K Series

2.5 A PWM Step-up DC/DC Converter

No.EA-278-180731

OUTLINE

The R1213K is a low supply current PWM step-up DC/DC converter capable of providing an output current up to 2.5 A. Internally, the device consists of an Nch MOSFET driver, an oscillator, a PWM comparator, a voltage reference unit, an error amplifier, a soft-start circuit, an under voltage lockout circuit (UVLO), a thermal shutdown protection circuit, an overcurrent protection circuit and an latch-type protection circuit.

The R1213K requires minimal external component count. By simply using an inductor, resistors, capacitors and a diode, a high-efficiency step-up DC/DC converter can be easily configured.

The R1213K can adjust the output voltage, the soft-start time, the phase compensation using the external resistors and capacitors.

The R1213K has a shutdown control function which can be activated by a protection circuit to turn off the external Pch MOSFET for breaking the current path between the input and output.

The R1213K provides an overcurrent protection circuit, a latch-type protection circuit, a thermal shutdown protection circuit and an UVLO circuit. The overcurrent protection circuit limits the Lx peak current and a latch-type protection circuit latches the Nch MOSFET off to stop the operation of the DC/DC converter if the output voltage drop due to overcurrent continues more than the protection delay time.

The R1213K is offered in a 12-pin DFN(PLP)2730-12 package.

FEATURES

- Input Voltage Range (Maximum Rating) ················ 2.3 V to 5.5 V (6.5 V)
- Supply Current ·· Typ. 550 µA (non-switching)
- Supply Current ·· Typ. 3 mA (switching)
- Standby Current··· Max. 1.5 µA (CE = "L")
- Output Voltage Range ······································· 3.0 V to 15.0 V, Externally Adjustable (VFB = 0.8 V)
- Feedback Voltage Accuracy ······························· ±8 mV
- Feedback Voltage Temperature Coefficient ··············· ±50 ppm/°C
- Output Current··· 1.0 A: VIN = 3.3 V, VOUT = 3.8 V
- Output Current··· 500 mA: VIN = 2.3 V, VOUT = 5.0 V
- Output Current··· 250 mA: VIN = 2.7 V, VOUT = 9.6 V
- Output Current··· 150 mA: VIN = 3.0 V, VOUT = 15 V
- Nch ON Resistance ·· Typ. 0.07 Ω
- Shutdown Control Function ································· Activated by the external Pch MOSFET
- Thermal Shutdown Circuit ··································· Activated at 150°C (Hys. = 40°C)
- Overcurrent Protection Circuit ····························· Activated at Typ. 3.0 A
R1213K
NO.EA-278-180731

- Latch-type Protection Circuit: Protection Delay Time: Typ. 32 ms
- FLAG Output Function: Activated at "H"
- UVLO Detector Threshold: Typ. 2.0 V
- Oscillator Frequency: Typ. 1.0 MHz
- Maximum Duty Cycle: Min. 85%, Typ. 90%
- Soft-start Time: Set by the SS Pin
- Phase Compensation: Set by the AMPOUT Pin
- Package: DFN(PLP)2730-12

APPLICATION
- Flash LEDs
- Data Cards
- DSCs
- LCD Source Bias Supplies

SELECTION GUIDE
The R1213K offers users to select the output voltage type matched to their set output voltage. Selecting the matched output voltage type can ensure high-speed transient response and stability.

| Selection Guide |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| **Product Name** | **Package** | **Quantity per Reel** | **Pb Free** | **Halogen Free** |
| R1213K001*-TR | DFN(PLP)2730-12 | 5,000 pcs | Yes | Yes |

*: Specify the output voltage type.
 A: Low Output Voltage Type (V\text{OUT}: 3.0 V to 6.0 V)
 B: High Output Voltage Type (V\text{OUT}: 6.0 V to 15 V)
R1213K Block Diagram
R1213K

NO.EA-278-180731

PIN DESCRIPTION

DFN(PLP)2730-12 Pin Configuration

<table>
<thead>
<tr>
<th>Pin No</th>
<th>Symbol</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AMPOUT</td>
<td>Amplifier Output Pin</td>
</tr>
<tr>
<td>2</td>
<td>(V_{FB})</td>
<td>Feedback Voltage Pin</td>
</tr>
<tr>
<td>3</td>
<td>CE</td>
<td>Chip Enable Pin, Active-high</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground Pin(^{(1)})</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground Pin(^{(1)})</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>Ground Pin(^{(1)})</td>
</tr>
<tr>
<td>7</td>
<td>TEST</td>
<td>TEST Pin(^{(2)})</td>
</tr>
<tr>
<td>8</td>
<td>(L_x)</td>
<td>Switching Pin(^{(1)})</td>
</tr>
<tr>
<td>9</td>
<td>(L_x)</td>
<td>Switching Pin(^{(1)})</td>
</tr>
<tr>
<td>10</td>
<td>(V_{IN})</td>
<td>Input Voltage Pin</td>
</tr>
<tr>
<td>11</td>
<td>FLAG</td>
<td>Shutdown Control Pin(^{(3)})</td>
</tr>
<tr>
<td>12</td>
<td>SS</td>
<td>Soft-start Pin</td>
</tr>
</tbody>
</table>

\(\ast \) The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.

\(^{(1)}\) The No.4, No.5 and No.6 pins must be connected together. The No.8 and No.9 pins must be connected together.

\(^{(2)}\) The TEST pin must be connected to GND or left floating.

\(^{(3)}\) The FLAG pin should be left floating when it is not used.
ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>V_{IN} Pin Voltage</td>
<td>-0.3 to 6.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{AMPOUT}</td>
<td>AMPOUT Pin Voltage</td>
<td>-0.3 to $V_{IN} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td>V_{CE}</td>
<td>CE Pin Voltage</td>
<td>-0.3 to 6.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{FB}</td>
<td>V_{FB} Pin Voltage</td>
<td>-0.3 to 6.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{SS}</td>
<td>SS Pin Voltage</td>
<td>-0.3 to $V_{IN} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td>V_{FLG}</td>
<td>FLAG Pin Voltage</td>
<td>-0.3 to $V_{IN} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td>V_{TST}</td>
<td>TEST Pin Voltage</td>
<td>-0.3 to $V_{IN} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td>V_{LX}</td>
<td>LX Pin Voltage</td>
<td>-0.3 to 18.0</td>
<td>V</td>
</tr>
<tr>
<td>P_D</td>
<td>Power Dissipation$^{(1)}$ (DFN(PLP)2730-12, JEDEC STD. 51-7 Test Land Pattern)</td>
<td>3100</td>
<td>mW</td>
</tr>
<tr>
<td>T_j</td>
<td>Junction Temperature Range</td>
<td>-40 to 125</td>
<td>°C</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>Storage Temperature Range</td>
<td>-55 to 125</td>
<td>°C</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured.

RECOMMENDED OPERATING CONDITIONS

RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Input Voltage</td>
<td>2.3 to 5.5</td>
<td>V</td>
</tr>
<tr>
<td>T_a</td>
<td>Operating Temperature Range</td>
<td>-40 to 85</td>
<td>°C</td>
</tr>
</tbody>
</table>

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such ratings by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

$^{(1)}$ Refer to POWER DISSIPATION for detailed information.
ELECTRICAL CHARACTERISTICS

Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Istandby</td>
<td>Standby Current</td>
<td>(V_{IN} = 5.5\ V, V_{CE} = 0\ V)</td>
<td>0.1</td>
<td>1.5</td>
<td></td>
<td>(\mu\A)</td>
</tr>
<tr>
<td>IDD1</td>
<td>Supply Current 1 (non-switching)</td>
<td>(V_{IN} = 5.5\ V, V_{FB} = 0.9\ V)</td>
<td>550</td>
<td>800</td>
<td></td>
<td>(\mu\A)</td>
</tr>
<tr>
<td>IDD2</td>
<td>Supply Current 2</td>
<td>(V_{IN} = 5.5\ V, V_{FB} = 0\ V)</td>
<td></td>
<td>4.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>VUVLO1</td>
<td>UVLO Detector Threshold</td>
<td>(V_{FB} = 0\ V)</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
<td>V</td>
</tr>
<tr>
<td>VUVLO2</td>
<td>UVLO Released Voltage</td>
<td>(V_{FB} = 0\ V)</td>
<td></td>
<td></td>
<td>2.25</td>
<td>V</td>
</tr>
<tr>
<td>VOUT</td>
<td>Output Voltage Range</td>
<td>R1213K001A</td>
<td>3.0</td>
<td>6.0</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VFB</td>
<td>Feedback Voltage Accuracy</td>
<td>(V_{IN} = 3.6\ V)</td>
<td>0.792</td>
<td>0.8</td>
<td>0.808</td>
<td>V</td>
</tr>
<tr>
<td>(\Delta V_{FB} / \Delta T_a)</td>
<td>Feedback Voltage Temperature Coefficient</td>
<td>(-40^\circ C \leq T_a \leq 85^\circ C)</td>
<td>±50</td>
<td></td>
<td></td>
<td>ppm/°C</td>
</tr>
<tr>
<td>ILXLEAK</td>
<td>Lx Leakage Current</td>
<td>(V_{LX} = 16\ V, V_{CE} = 0\ V)</td>
<td>0.01</td>
<td>2.0</td>
<td></td>
<td>(\mu\A)</td>
</tr>
<tr>
<td>IFBH</td>
<td>(V_{FB}) “H” Input Current</td>
<td>(V_{IN} = 5.5\ V, V_{FB} = 5.5\ V)</td>
<td>0.15</td>
<td></td>
<td></td>
<td>(\mu\A)</td>
</tr>
<tr>
<td>IFBL</td>
<td>(V_{FB}) “L” Input Current</td>
<td>(V_{IN} = 5.5\ V, V_{FB} = 0\ V)</td>
<td></td>
<td>-0.15</td>
<td></td>
<td>(\mu\A)</td>
</tr>
<tr>
<td>ICEL</td>
<td>VCEL Input Current</td>
<td>(V_{IN} = 5.5\ V, V_{CE} = 0\ V)</td>
<td>-0.2</td>
<td>0.2</td>
<td></td>
<td>(\mu\A)</td>
</tr>
<tr>
<td>RCE</td>
<td>CE Pull-down Resistance</td>
<td></td>
<td>1000</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>ISS</td>
<td>Soft-start Current</td>
<td>(V_{IN} = 3.6\ V)</td>
<td>10</td>
<td></td>
<td></td>
<td>(\mu\A)</td>
</tr>
<tr>
<td>VCEH</td>
<td>CE Input Voltage “H”</td>
<td>(V_{IN} = 5.5\ V)</td>
<td>1.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VCEL</td>
<td>CE Input Voltage “L”</td>
<td>(V_{IN} = 2.3\ V)</td>
<td>0.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>fosc</td>
<td>Oscillator Frequency</td>
<td>(V_{IN} = 3.6\ V, V_{FB} = 0\ V)</td>
<td>0.85</td>
<td>1.00</td>
<td>1.15</td>
<td>MHz</td>
</tr>
<tr>
<td>Maxduty</td>
<td>Maximum Duty Cycle</td>
<td>(V_{IN} = 3.6\ V, V_{FB} = 0\ V)</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>%</td>
</tr>
<tr>
<td>TSD</td>
<td>Thermal Shutdown Temperature</td>
<td>Junction Temperature</td>
<td>150</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>TSR</td>
<td>Thermal Shutdown Released Temperature</td>
<td>Junction Temperature</td>
<td>110</td>
<td></td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>gm</td>
<td>Trans-conductance(^{(1)})</td>
<td>(V_{IN} = 3.6\ V)</td>
<td>220</td>
<td></td>
<td></td>
<td>(\mu\S)</td>
</tr>
<tr>
<td>ILXLM</td>
<td>Lx Current Limit</td>
<td>(V_{IN} = 3.6\ V)</td>
<td>2.5</td>
<td>3.0</td>
<td>3.8</td>
<td>A</td>
</tr>
<tr>
<td>Ron</td>
<td>Nch ON Resistance(^{(1)})</td>
<td>(V_{IN} = 3.6\ V)</td>
<td>0.07</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>tprot</td>
<td>Latch-type Protection Delay Time</td>
<td>(V_{IN} = 3.6\ V)</td>
<td>32</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>IRUSH</td>
<td>Inrush Current(^{(2)})</td>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Guaranteed by design engineering, not mass production tested.

\(^{(2)}\) Guaranteed by design engineering when the external Pch MOSFET is connected to the FLAG pin. Refer to the recommended components at \textit{APPLICATION INFORMATION} and \textit{TECHNICAL NOTES}.
APPLICATION INFORMATION

Typical Application

External Pch MOSFET is Connected for Breaking the Current Path between VIN – VOUT (VOUT < 13 V)

![Diagram](image)

Notes: The GND pins and also the Lx pins must be mutually short-circuited right near the ground plane on the board. The TEST pin must be connected to the ground plane on the board or be left floating.

External Pch MOSFET is NOT Connected for Breaking the Current Path between VIN – VOUT (VOUT < 13 V)

![Diagram](image)

Notes: The GND pins and also the Lx pins must be mutually short-circuited right near the ground plane on the board. The TEST pin must be connected to the ground plane on the board or be left floating. The FLAG pin must be left floating.
External Pch MOSFET is Connected for Breaking the Current Path between \(V_{IN} - V_{OUT} \) \((V_{OUT} \geq 13 \text{ V}) \)

![Circuit Diagram](image)

Notes: The GND pins and also the \(L_{X} \) pins must be mutually short-circuited right near the ground plane on the board. The TEST pin must be connected to the ground plane on the board or be left floating. The snubber circuit must be added for preventing spike noise on the \(L_{X} \) pin.

External Pch MOSFET is NOT Connected for Breaking the Current Path between \(V_{IN} - V_{OUT} \) \((V_{OUT} \geq 13 \text{ V}) \)

![Circuit Diagram](image)

Notes: The GND pins and also the \(L_{X} \) pins must be mutually short-circuited right near the ground plane on the board. The TEST pin must be connected to the ground plane on the board or be left floating. The FLAG pin must be left floating. The snubber circuit must be added for preventing spike noise on the \(L_{X} \) pin.
Recommended Components

<table>
<thead>
<tr>
<th></th>
<th>V_IN</th>
<th>Cap.</th>
<th>Spec.</th>
<th>Part Name</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_IN</td>
<td>All</td>
<td>10 µF</td>
<td>6.3 V</td>
<td>C2012JB0J106M</td>
<td>TDK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>V_OUT</th>
<th>Cap.</th>
<th>Spec.</th>
<th>Part Name</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_OUT</td>
<td>≤ 5 V</td>
<td>10 µF</td>
<td>6.3 V</td>
<td>C2012JB0J106M</td>
<td>TDK</td>
</tr>
<tr>
<td></td>
<td>≤ 10 V</td>
<td>10 µF</td>
<td>16 V</td>
<td>C2012X5R1C106K</td>
<td>TDK</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>10 µF</td>
<td>25 V</td>
<td>C3216X5R1E106K</td>
<td>TDK</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>10 µF</td>
<td>25 V</td>
<td>TMK325BJ106MN</td>
<td>Taiyo Yuden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>V_OUT</th>
<th>Spec.</th>
<th>Part Name</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>all</td>
<td>40 V, 3 A</td>
<td>CMS16</td>
<td>TOSHIBA</td>
</tr>
<tr>
<td></td>
<td>all</td>
<td>40 V, 3 A</td>
<td>RB056L-40</td>
<td>ROHM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>V_OUT</th>
<th>Ind.</th>
<th>Spec.</th>
<th>Part Name</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1(1)</td>
<td>3.0V ≤ V_OUT ≤ 4.5V</td>
<td>2.2 A</td>
<td>2.2 µH</td>
<td>SPM3012T-2R2N</td>
<td>TDK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.7 A</td>
<td>2.7 µH</td>
<td>SPM4012T-2R2N</td>
<td>TDK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.5 A</td>
<td>3.5 µH</td>
<td>NR5040T2R2N</td>
<td>Taiyo Yuden</td>
</tr>
<tr>
<td></td>
<td>4.5V < V_OUT ≤ 12V</td>
<td>1.7 A</td>
<td>4.7 µH</td>
<td>SPM4012T-4R7N</td>
<td>TDK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.1 A</td>
<td>3.1 µH</td>
<td>NR5040T4R7N</td>
<td>Taiyo Yuden</td>
</tr>
<tr>
<td></td>
<td>12V < V_OUT ≤ 15V</td>
<td>1.4 A</td>
<td>6.8 µH</td>
<td>VLF5014ST-6R8N</td>
<td>TDK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.8 A</td>
<td></td>
<td>RLF7030T-6R8N</td>
<td>TDK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.7 A</td>
<td></td>
<td>NR8040T6R8N</td>
<td>Taiyo Yuden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>V_OUT</th>
<th>Spec. (I_DS, V_DS, V_GS)</th>
<th>Part Name</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pch.MOSFET</td>
<td>all</td>
<td>4.5 A, −30 V, ±20 V</td>
<td>UPA1914</td>
<td>Renesas</td>
</tr>
</tbody>
</table>

(1) It is recommended that the rated current of the inductor be higher than the LX limit current. Performing the current limitation outside of the R1213K requires the use of small components.
• **Selection of Resistors and Capacitors for Phase Compensation**

The R1213x requires an external phase compensation on the feedback loop for output voltage control to prevent the large output ripple, the unstable operation and the deterioration of device efficiency. Connect a resistor (RCOMP) and a capacitor (CCOMP) between the AMPOUT and GND pins.

RCOMP and CCOMP can be calculated as follows:

[R1213K001A]

\[
R_{\text{COMP}} = 90 \times V_{\text{IN}} \times V_{\text{OUT}} \times C_{\text{OUT}} / (L \times I_{\text{OUT MAX}})
\]

\[
C_{\text{COMP}} = 30 \times V_{\text{OUT}} \times L \times I_{\text{OUT MAX}} / (V_{\text{IN}}^2 \times R_{\text{COMP}})
\]

[R1213K001B]

\[
R_{\text{COMP}} = 45 \times V_{\text{IN}} \times V_{\text{OUT}} \times C_{\text{OUT}} / (L \times I_{\text{OUT MAX}})
\]

\[
C_{\text{COMP}} = 30 \times V_{\text{OUT}} \times L \times I_{\text{OUT MAX}} / (V_{\text{IN}}^2 \times R_{\text{COMP}})
\]

The appropriate values for RCOMP and CCOMP vary depending on the peripheral components and circuit board. Determine the appropriate values for RCOMP and CCOMP according to the transient response.

<table>
<thead>
<tr>
<th>V_{\text{IN}} (V)</th>
<th>V_{\text{OUT}} (V)</th>
<th>I_{\text{OUT MAX}} (mA)</th>
<th>C_{\text{IN}} (\mu F)</th>
<th>C_{\text{OUT}} (\mu F)</th>
<th>L1 (\mu H)</th>
<th>D1</th>
<th>R_{\text{COMP}} (k\Omega)</th>
<th>C_{\text{COMP}} (nF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>3.8</td>
<td>1200</td>
<td>10</td>
<td>20</td>
<td>2.2</td>
<td>3 A</td>
<td>8.2</td>
<td>3.3</td>
</tr>
<tr>
<td>3.3</td>
<td>5</td>
<td>800</td>
<td>10</td>
<td>20</td>
<td>4.7</td>
<td>3 A</td>
<td>8.2</td>
<td>6.8</td>
</tr>
<tr>
<td>3.3</td>
<td>12</td>
<td>250</td>
<td>10</td>
<td>20</td>
<td>4.7</td>
<td>3 A</td>
<td>27</td>
<td>1.8</td>
</tr>
<tr>
<td>5.0</td>
<td>15</td>
<td>650</td>
<td>10</td>
<td>20</td>
<td>6.8</td>
<td>3 A</td>
<td>15</td>
<td>5.1</td>
</tr>
</tbody>
</table>

• **Output Voltage Setting**

The output voltage can be calculated by the values of resistors (R1 and R2) as follows:

\[
\text{Output Voltage} = V_{\text{FB}} \times (R1 + R2) / R1
\]

\[(V_{\text{FB}} = 0.8 \text{ V})\]

Notes: Set the sum of R1 and R2 to be 200 k\Omega or less.

• **Soft-start Time Setting**

The soft-start time can be adjusted by a capacitor (C_{SS}) between the SS and GND pins.

The soft-start time can be calculated as follows:

\[
\text{Soft-start time} = C_{\text{SS}} \times V_{\text{FB}} / I_{\text{SS}}
\]

\[= 8 \times C_{\text{SS}} \times 10^4 \text{ [sec]}\]

\[(V_{\text{FB}} = 0.8 \text{ V}, I_{\text{SS}} = 10 \mu A)\]
• Operation of Step-Up Dc/Dc Converter and Output Current

![Basic Circuit Diagram]

Current (IL) Flowing Through Inductor (L)

Discontinuous Inductor Current Mode

The PWM control type of the step-up DC/DC converter has two operation modes characterized by the continuity of inductor current: discontinuous inductor current mode and continuous inductor current mode.

When an Nch transistor is in On-state, the voltage to be applied to the inductor (L) is described as V_{IN}. An increase in the inductor current (IL_1) can be written as follows:

$$IL_1 = \frac{V_{IN} \times ton}{L}$$ \hspace{1cm} \text{Formula 1}

In the step-up DC/DC converter circuit, the energy accumulated during the On-state is transferred into the capacitor even in the Off-state. A decrease in the inductor current (IL_2) can be written as follows:

$$IL_2 = \frac{(V_{OUT} - V_{IN}) \times topen}{L}$$ \hspace{1cm} \text{Formula 2}
In the PWM control, IL1 and IL2 become continuous when topen = toff, which is called continuous inductor current mode.

When the device is in continuous inductor current mode and operates in steady-state conditions, the variations of IL1 and IL2 are same:

\[\frac{V_{IN} \times t_{on}}{L} = \frac{(V_{OUT} - V_{IN}) \times t_{off}}{L} \] ... Formula 3

Therefore, the duty cycle in continuous inductor current mode is:

\[\text{duty} (\%) = \frac{t_{on}}{(t_{on} + t_{off})} = \frac{(V_{OUT} - V_{IN})}{V_{OUT}} \] ... Formula 4

When topen = toff, the average of IL1 is:

\[IL_{1 \text{ (Ave.)}} = \frac{V_{IN} \times t_{on}}{(2 \times L)} \] ... Formula 5

If the input voltage (V_{IN}) is equal to the output voltage (V_{OUT}), the output current (I_{OUT}) is:

\[I_{OUT} = \frac{V_{IN}^2 \times t_{on}}{(2 \times L \times V_{OUT})} \] ... Formula 6

If I_{OUT} is larger than Formula 6, the device switches to continuous inductor current mode

The Lx peak current flowing through L (ILmax) is:

\[IL_{max} = \frac{I_{OUT} \times V_{OUT}}{V_{IN} + V_{IN} \times t_{on} / (2 \times L)} \] ... Formula 7

\[IL_{max} = \frac{I_{OUT} \times V_{OUT}}{V_{IN} + V_{IN} \times t \times (V_{OUT} - V_{IN}) / (2 \times L \times V_{OUT})} \] ... Formula 8

As a result, ILmax becomes larger compared to I_{OUT}. The overcurrent protection circuit operates if the ILmax becomes more than the Lx current limit. When considering the input and output conditions or selecting the external components, please pay attention to ILmax.

Notes: The above calculations are based on the ideal operation of the device. They do not include the losses caused by the external components or Nch transistor. The actual maximum output current will be 50% to 80% of the above calculation results. Especially, if IL is large or V_{IN} is low, it may cause the switching losses.
TECHNICAL NOTES

The performance of a power source circuit using this device is highly dependent on a peripheral circuit. A peripheral component or the device mounted on PCB should not exceed a rated voltage, a rated current or a rated power. When designing a peripheral circuit, please be fully aware of the following points.

- Ensure that the VIN and GND lines are firmly connected. A large switching current flows through the VIN and GND lines. If their impedance is too high, noise pickup or unstable operation may result.

- When an Nch MOSFET driver is turned off, the inductor may generate a spike-shaped high voltage. Use a high-break-down-voltage capacitor (C_{OUT}) and a high-break-down-voltage diode that are 1.5 times or more than the set output voltage.

- Choose a schottky diode (D1) that has low forward voltage, low reverse current, and is fast in switching speed.

- Use an inductor that has a low DC resistance, has an enough tolerable current and is less likely to cause magnetic saturation.

- The FLAG pin (Shutdown Control Pin) turns off the external Pch MOSFET to break the current path between VIN and VOUT during standby, UVLO, thermal shutdown and latch-type protection. Place a capacitor of 1 µF between the source of the external Pch MOSFET and GND to protect the external Pch MOSFET from overvoltage caused by the inductor current.
 During the soft-start, the FLAG pin turns on or off the external Pch MOSFET synchronizing with the switching of the Nch MOSFET to prevent the inrush current. Select the external Pch MOSFET with fast switching speed (Approx. 100 ns) and small gate capacity (3 nF or less).

- The spike noise of L_{X} should not exceed the absolute maximum rating. The spike noise of L_{X} may exceed the absolute maximum ratings under V_{OUT} ≥ 13 V. To reduce the spike noise of L_{X}, place a snubber circuit (R_{SNB} and C_{SNB} are connected in series) parallel to the diode (D1). A snubber circuit may also be required under V_{OUT} < 13 V if the spike noise of L_{X} is large. It is recommended that a capacitor (C_{SNB}) be 1100 pF and a resistor (R_{SNB}) be 0.68 Ω. The appropriate values for C_{SNB} and R_{SNB} vary significantly depending on the circuit board and affect the device efficiency. Actual circuit board testing is required.
• Latch-type protection circuit latches the Nch MOSFET off to stop the operation of the DC/DC converter if the output voltage drop due to overcurrent continues more than the protection delay time. When the latch-type protection circuit operates, the FLAG pin outputs “H” and turns the external Pch MOSFET off to break the current path between VIN and VOUT. The protection delay time is set to typically 32 ms. If the output voltage returns to normal during the protection delay time, the internal timer will be reset. To release the latch-type protection, set the CE pin “H” or make the power supply voltage lower than the UVLO detector threshold.

• Connect the TEST pin to GND or otherwise leave it floating.

• Connect the FLAG pin to the external Pch MOSFET gate only.

• To prevent inrush current, connect the SS pin to a capacitor (CSS) only.

• The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating. To enhance the thermal performance of multilayer circuit board, provide a thermal via under the tab on the bottom of the package.

• In Fig. A and Fig. B, the current paths on the boost DC/DC converter are shown. The current paths when the MOSFET turns on are shown in Fig. A, and the current paths when the MOSFET turns off are shown in Fig. B. The pointed parts with red arrows in Fig. B are where the current flows only when the MOSFET turns on, or off. The parasitic impedance, inductance, or parasitic capacitance of these parts have some impact on the stability of DC/DC converter, and may cause a noise generation. Therefore the parasitic impedance, capacitance, inductance must be as small as possible. Furthermore, the current paths shown in Fig. A and Fig. B must be as short as possible and as wide as possible.
• PCB Layout

R1213K001A/B (PKG: DFN(PLP)2730-12pin)

Typical Board Layout – Top Layer

Typical Board Layout – Back Layer

Note: R2 patterns are the layout for 2 serial resistance chips, RT1 and RT2 to set preferred value easier.
TYPICAL CHARACTERISTICS

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

1) Output Voltage vs. Output Current (Ta = 25°C)

- **V_{OUT} = 3.0 V**
 - VIN = 2.3V
 - VIN = 2.7V

- **V_{OUT} = 5.0 V**
 - VIN = 2.3V
 - VIN = 3.0V
 - VIN = 3.3V
 - VIN = 4.0V
 - VIN = 4.5V

- **V_{OUT} = 12 V**
 - VIN = 3.0V
 - VIN = 3.3V
 - VIN = 4.0V
 - VIN = 5.0V
 - VIN = 5.5V

- **V_{OUT} = 15 V**
 - VIN = 2.5V
 - VIN = 3.0V
 - VIN = 3.3V
 - VIN = 4.0V
 - VIN = 5.0V
 - VIN = 5.5V
2) Efficiency vs. Output Current (Ta = 25°C)

V\text{OUT} = 3.0 \text{ V}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{efficiency_3v.png}
\end{figure}

V\text{OUT} = 5.0 \text{ V}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{efficiency_5v.png}
\end{figure}

V\text{OUT} = 12 \text{ V}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{efficiency_12v.png}
\end{figure}

V\text{OUT} = 15 \text{ V}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{efficiency_15v.png}
\end{figure}

3) Standby Current vs. Temperature

\begin{figure}
\centering
\includegraphics[width=\textwidth]{standby_current.png}
\end{figure}

4) Supply Current 1 vs. Temperature

\begin{figure}
\centering
\includegraphics[width=\textwidth]{supply_current.png}
\end{figure}
5) Supply Current 2 vs. Temperature

6) Frequency vs. Temperature

7) Maxduty vs. Temperature

8) FB Voltage vs. Temperature

9) CE “H” Input Voltage vs. Temperature

10) Lx Limit Current vs. Temperature
11) Protection Delay Time vs. Temperature

![Graph showing protection delay time vs. temperature.](image)

12) Start-up Waveform (Ta = 25°C, C_{SS} = 0.1 μF, External Pch MOSFET Connected between V\text{IN} – V\text{OUT})

- V\text{IN} = 3.3 V, V\text{OUT} = 5.0 V, I\text{OUT} = 10 mA
- V\text{IN} = 3.3 V, V\text{OUT} = 5.0 V, I\text{OUT} = 500 mA
- V\text{IN} = 3.3 V, V\text{OUT} = 12 V, I\text{OUT} = 10 mA
- V\text{IN} = 3.3 V, V\text{OUT} = 12 V, I\text{OUT} = 200 mA
13) Load Transient Response Waveform (Ta = 25°C)

- $V_{IN} = 3.3\, V$, $V_{OUT} = 5.0\, V$, $I_{OUT} = 20 \Leftrightarrow 500\, mA$
 - $L = 4.7\, \mu H$, $C_{OUT} = 20\, \mu F$, $R_{COMP} = 8.2\, k\Omega$, $C_{COMP} = 6.8\, nF$

- $V_{IN} = 3.0\, V$, $V_{OUT} = 12\, V$, $I_{OUT} = 10 \Leftrightarrow 200\, mA$
 - $L = 4.7\, \mu H$, $C_{OUT} = 20\, \mu F$, $R_{COMP} = 27\, k\Omega$, $C_{COMP} = 1.8\, nF$

- $V_{IN} = 5.0\, V$, $V_{OUT} = 15.0\, V$, $I_{OUT} = 100 \Leftrightarrow 500\, mA$
 - $L = 6.8\, \mu H$, $C_{OUT} = 20\, \mu F$, $R_{COMP} = 15\, k\Omega$, $C_{COMP} = 5.1\, nF$
14) Output Voltage Waveform (Ta = 25°C)

- \(V_{IN} = 3.3 \text{ V}, V_{OUT} = 5.0 \text{ V}, I_{OUT} = 500 \text{ mA} \)
 \(L = 4.7 \mu\text{H}, C_{OUT} = 20 \mu\text{F} \)

- \(V_{IN} = 3.3 \text{ V}, V_{OUT} = 12 \text{ V}, I_{OUT} = 200 \text{ mA} \)
 \(L = 4.7 \mu\text{H}, C_{OUT} = 20 \mu\text{F} \)

- \(V_{IN} = 5.0 \text{ V}, V_{OUT} = 15 \text{ V}, I_{OUT} = 500 \text{ mA} \)
 \(L = 6.8 \mu\text{H}, C_{OUT} = 20 \mu\text{F} \)
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

<table>
<thead>
<tr>
<th>Item</th>
<th>Measurement Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>Mounting on Board (Wind Velocity = 0 m/s)</td>
</tr>
<tr>
<td>Board Material</td>
<td>Glass Cloth Epoxy Plastic (Four-Layer Board)</td>
</tr>
<tr>
<td>Board Dimensions</td>
<td>76.2 mm × 114.3 mm × 0.8 mm</td>
</tr>
<tr>
<td>Copper Ratio</td>
<td>Outer Layer (First Layer): Less than 95% of 50 mm Square</td>
</tr>
<tr>
<td></td>
<td>Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square</td>
</tr>
<tr>
<td></td>
<td>Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square</td>
</tr>
<tr>
<td>Through-holes</td>
<td>Ø 0.3 mm × 23 pcs</td>
</tr>
</tbody>
</table>

Measurement Result

(Ta = 25°C, Tjmax = 125°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Measurement Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Dissipation</td>
<td>3100 mW</td>
</tr>
<tr>
<td>Thermal Resistance ((\theta_{ja}))</td>
<td>(\theta_{ja} = 32°C/W)</td>
</tr>
<tr>
<td>Thermal Characterization Parameter ((\psi_{jt}))</td>
<td>(\psi_{jt} = 8°C/W)</td>
</tr>
</tbody>
</table>

\(\theta_{ja}\): Junction-to-Ambient Thermal Resistance
\(\psi_{jt}\): Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern
The tab on the bottom of the package shown by blue circle is a substrate potential (GND). It is recommended that this tab be connected to the ground plane on the board but it is possible to leave the tab floating.
1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.

2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.

3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.

4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh’s or any third party’s intellectual property rights or any other rights.

5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a Ricoh product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combination equipment, medical equipment, etc.) should first contact us.

6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundency feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.

7. Anti-radiation design is not implemented in the products described in this document.

8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.

9. WL CSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.

10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.

11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.

Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

https://www.e-devices.ricoh.co.jp/en/